A soil incubation method was used to investigate the solubility characteristics and slow-release mechanism of organic-inorganic compound coated urea at temperature of 10, 20, and 30°C. The membrane microstructure with and without incubation was tested via scanning electron microscopy (SEM). Slow release of nitrogen (N) from different inorganic minerals was analysed by the activation energy from the nutrient solubility system. The rate of nitrogen solubility increased with temperature increasing. The first-order reaction kinetic equation described the solubility process of coated urea. The rate constantkalso increased with temperature increasing. Moreover, the SEM images showed that the microstructure of the coating layer changed into a flocculent structure and the number of tiny pores and holes on the membrane surface increased significantly with temperature increasing, which increased N solubility rate. The Arrhenius equation indicated that activation energy was closely related tokduring the solubility process; the activation energy was reduced withkrising, which resulted in N solubility rate increasing. Overall, the N solubility rate of coated urea was affected by temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.