Purpose Gaining independence from fossil fuels and combating climate change are the main factors to increase the generation of electricity from renewable fuels. Amongst the renewable technologies, solar photovoltaic (PV) is believed to have the largest potential. However, the number of people adopting solar PV technologies is still relatively low. Therefore, the purpose of this paper is to examine the household consumers’ acceptance of solar PV technology being installed on their premises. Design/methodology/approach To examine the solar PV technology acceptance, this study uses technology acceptance model (TAM) as a reference framework. A survey was conducted to gather data and to validate the research model. Out of 780 questionnaires distributed across Malaysia, 663 were returned and validated. Findings The analysis revealed that perceived ease of use, perceived usefulness and attitude to use significantly influenced behavioural intention to use solar PV technology. Research limitations/implications This study contributes by extending the understanding of public inclination towards the adoption of solar PV technology. Also, this study contributes in identifying the areas which need to be examined further. However, collecting data from urban peninsular Malaysian respondents only limits the generalization of the results. Practical implications On the policy front, this study reveals that governmental support is needed to trigger PV acceptance. Originality/value This paper uses TAM to analyse the uptake of solar PV technology in Malaysian context.
CONSPECTUS: In a conventional photovoltaic device (solar cell or photodiode) photons are absorbed in a bulk semiconductor layer, leading to excitation of an electron from a valence band to a conduction band. Directly after photoexcitation, the hole in the valence band and the electron in the conduction band have excess energy given by the difference between the photon energy and the semiconductor band gap. In a bulk semiconductor, the initially hot charges rapidly lose their excess energy as heat. This heat loss is the main reason that the theoretical efficiency of a conventional solar cell is limited to the Shockley-Queisser limit of ∼33%. The efficiency of a photovoltaic device can be increased if the excess energy is utilized to excite additional electrons across the band gap. A sufficiently hot charge can produce an electron-hole pair by Coulomb scattering on a valence electron. This process of carrier multiplication (CM) leads to formation of two or more electron-hole pairs for the absorption of one photon. In bulk semiconductors such as silicon, the energetic threshold for CM is too high to be of practical use. However, CM in nanometer sized semiconductor quantum dots (QDs) offers prospects for exploitation in photovoltaics. CM leads to formation of two or more electron-hole pairs that are initially in close proximity. For photovoltaic applications, these charges must escape from recombination. This Account outlines our recent progress in the generation of free mobile charges that result from CM in QDs. Studies of charge carrier photogeneration and mobility were carried out using (ultrafast) time-resolved laser techniques with optical or ac conductivity detection. We found that charges can be extracted from photoexcited PbS QDs by bringing them into contact with organic electron and hole accepting materials. However, charge localization on the QD produces a strong Coulomb attraction to its counter charge in the organic material. This limits the production of free charges that can contribute to the photocurrent in a device. We show that free mobile charges can be efficiently produced via CM in solids of strongly coupled PbSe QDs. Strong electronic coupling between the QDs resulted in a charge carrier mobility of the order of 1 cm(2) V(-1) s(-1). This mobility is sufficiently high so that virtually all electron-hole pairs escape from recombination. The impact of temperature on the CM efficiency in PbSe QD solids was also studied. We inferred that temperature has no observable effect on the rate of cooling of hot charges nor on the CM rate. We conclude that exploitation of CM requires that charges have sufficiently high mobility to escape from recombination. The contribution of CM to the efficiency of photovoltaic devices can be further enhanced by an increase of the CM efficiency above the energetic threshold of twice the band gap. For large-scale applications in photovoltaic devices, it is important to develop abundant and nontoxic materials that exhibit efficient CM.
Conspectus Organic photovoltaics (OPVs) have the advantages of being lightweight, mechanically flexible, and solution-processable over large areas, and for decades, they have been the focus of the academic and industrial communities. Recent progress in the design of high-performance organic semiconductors and device optimization has promoted solar cell efficiencies of up to 19%, showing great promise for commercialization. Optimally designed OPVs are achieved using a bicontinuous interpenetrating network of donor and acceptor materials in between two charge-collecting electrodes. Charge extraction and transport between metal electrodes and organic semiconductors are crucial to device operation. The energy-level mismatch when metal electrodes and organic semiconductors are in contact usually induces additional energy barriers and resultant inefficient charge transport and collection, leading to charge carrier recombination at the interface and inferior device performance. To align energy levels at the interface, interlayer materials and their integration into devices have emerged as a widely used strategy to promote the performance of solar cell devices. Interlayer materials have the ability to modify the work functions (WFs) of metal electrodes, holding the potential to enhance the built-in electrostatic field (V bi) of the devices and suppress the charge recombination loss, which is beneficial to improving the open circuit voltage (V OC), short circuit current density (J SC), and fill factor (FF) of the solar cells. Organic interlayer materials have recently come into focus for fundamental study and practical development because of their diverse molecular design and superior solution processability. Tremendous effort has been devoted to exploring novel organic interlayer materials to achieve all-solution-processed multilayer solar cells. Such interlayer materials usually have orthogonal solubilities relative to the photoactive layer materials, working as multifunctional interfacial layers to manipulate the mechanical and electrical contacts in solar cell devices. Ionenes are a unique class of polyelectrolytes wherein the ionic species reside within the polymer backbone rather than as pendant groups. In ionenes, the charge density is high in comparison to that of other polyelectrolytes, and the periodicity of the charges is easily controlled, providing a tunable density of dipole moments. Ionenes can be readily synthesized from 3° diamines and α,ω-dihaloalkanes to generate polymer chains of ammonium cations connected by flexible hydrocarbon linkages with mobile anions. However, the requisite building blocks of ionenes are not limited to such molecules. Recent advances in combining ionenes with conjugated molecules to generate electroactive ionenes have catalyzed a great amount of interest in such polymers for organic electronic devices. In this Account, we first introduce the molecular design and synthesis of electroactive ionenes. Following this, we will discuss the mechanism and effect of ionenes on the modifi...
cells (OSCs) are lightweight, flexible, and have easy solution processability, thus making them advantageous for large-area device fabrication. The interlayer materials between the electrodes and organic active layer are vital elements for device fabrication. Recently, solution-processable fullerene derivatives have been studied intensively as efficient electrode interlayer materials for solar cell applications. In this Minireview, we summarize recent advances using fullerene derivatives as interlayers in OSCs. The examples include full-erene interlayers from small molecules to polymers, and to organic composites or organic/inorganic hybrid materials. We focus on the comprehensive efforts in developing fullerenebased interlayers and present the understanding of multiple functionalities of these materials as cathode interlayers in bulk hetero-junction (BHJ) OSCs. Our motivation is to describe our current understanding, recent progress, and outstanding issues of fullerene interlayers in OSCs, and propose future potential directions and opportunities.[a] Y.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.