Methane is important in future energy schemes. The main strategies for storing and transporting methane are compression, liquefaction, and physical adsorption in synthetic porous materials. Here, we show that methane can be stored in a hydrated form using natural amino acids such as leucines as effective promoters to form methane hydrate with a high formation rate and a high capacity. In addition, the methane hydrate formed from the L‐leucine solution dissociates without foaming phenomenon. We also showed that the heavier hydrocarbons in natural gas can enhance the promoting effect of L‐leucine.
Vehicle detection is a challenging problem in autonomous driving systems, due to its large structural and appearance variations. In this paper, we propose a novel vehicle detection scheme based on multi-task deep convolutional neural networks (CNNs) and region-of-interest (RoI) voting. In the design of CNN architecture, we enrich the supervised information with subcategory, region overlap, bounding-box regression, and category of each training RoI as a multi-task learning framework. This design allows the CNN model to share visual knowledge among different vehicle attributes simultaneously, and thus, detection robustness can be effectively improved. In addition, most existing methods consider each RoI independently, ignoring the clues from its neighboring RoIs. In our approach, we utilize the CNN model to predict the offset direction of each RoI boundary toward the corresponding ground truth. Then, each RoI can vote those suitable adjacent bounding boxes, which are consistent with this additional information. The voting results are combined with the score of each RoI itself to find a more accurate location from a large number of candidates. Experimental results on the real-world computer vision benchmarks KITTI and the PASCAL2007 vehicle data set show that our approach achieves superior performance in vehicle detection compared with other existing published works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.