Source code clones are categorized into four types of increasing difficulty of detection, ranging from purely textual (Type-1) to purely semantic (Type-4). Most clone detectors reported in the literature work well up to Type-3, which accounts for syntactic differences. In between Type-3 and Type-4, however, there lies a spectrum of clones that, although still exhibiting some syntactic similarities, are extremely hard to detect -the Twilight Zone. Most clone detectors reported in the literature fail to operate in this zone. We present Oreo, a novel approach to source code clone detection that not only detects Type-1 to Type-3 clones accurately, but is also capable of detecting harder-to-detect clones in the Twilight Zone. Oreo is built using a combination of machine learning, information retrieval, and software metrics. We evaluate the recall of Oreo on BigCloneBench, and perform manual evaluation for precision. Oreo has both high recall and precision. More importantly, it pushes the boundary in detection of clones with moderate to weak syntactic similarity in a scalable manner.
Abstract-Dominated by delay-sensitive and massive data applications, radio resource management in 5G access networks is expected to satisfy very stringent delay and packet loss requirements. In this context, the packet scheduler plays a central role by allocating user data packets in the frequency domain at each predefined time interval. Standard scheduling rules are known limited in satisfying higher Quality of Service (QoS) demands when facing unpredictable network conditions and dynamic traffic circumstances. This paper proposes an innovative scheduling framework able to select different scheduling rules according to instantaneous scheduler states in order to minimize the packet delays and packet drop rates for strict QoS requirements applications. To deal with real-time scheduling, the Reinforcement Learning (RL) principles are used to map the scheduling rules to each state and to learn when to apply each. Additionally, neural networks are used as function approximation to cope with the RL complexity and very large representations of the scheduler state space. Simulation results demonstrate that the proposed framework outperforms the conventional scheduling strategies in terms of delay and packet drop rate requirements.
Both indoles and benzo [b]furans can be obtained in high yield by the reactions of 2-iodoaniline derivatives and 2-iodophenols with terminal alkynes under mild conditions, namely in the presence of cuprous iodide (10 mol%) and a base in ethanol or 1,4-dioxane. Further investigation reveals that palladium contaminants as low as 100 ppb are responsible for these successful couplings. It is worth noting that simple aliphatic substituted terminal alkynes could be tolerated to smoothly produce indole and benzo [b]furan derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.