The abundant and reversible N6‐methyladenosine (m6A) R NA modification and its modulators have important roles in regulating various gene expression and biological processes. Here, we demonstrate that fat mass and obesity associated ( FTO ), as an m6A demethylase, plays a critical anti‐tumorigenic role in clear cell renal cell carcinoma (cc RCC ). FTO is suppressed in cc RCC tissue. The low expression of FTO in human cc RCC correlates with increased tumour severity and poor patient survival. The Von Hippel‐Lindau‐deficient cells expressing FTO restores mitochondrial activity, induces oxidative stress and ROS production and shows impaired tumour growth, through increasing expression of PGC ‐1α by reducing m6A levels in its mRNA transcripts. Our work demonstrates the functional importance of the m6A methylation and its modulator, and uncovers a critical FTO ‐ PGC ‐1α axis for developing effective therapeutic strategies in the treatment of cc RCC .
Illustration showing the fabrication process and test contents of electrospun gelatin nanofibers loaded with vitamins A and E as wound dressing materials in this paper.
LAG3 is the most promising immune checkpoint next to PD-1 and CTLA-4. High LAG3 and FGL1 expression boosts tumor growth by inhibiting the immune microenvironment. This review comprises four sections presenting the structure/expression, interaction, biological effects, and clinical application of LAG3/FGL1. D1 and D2 of LAG3 and FD of FGL1 are the LAG3-FGL1 interaction domains. LAG3 accumulates on the surface of lymphocytes in various tumors, but is also found in the cytoplasm in non-small cell lung cancer (NSCLC) cells. FGL1 is found in the cytoplasm in NSCLC cells and on the surface of breast cancer cells. The LAG3-FGL1 interaction mechanism remains unclear, and the intracellular signals require elucidation. LAG3/FGL1 activity is associated with immune cell infiltration, proliferation, and secretion. Cytokine production is enhanced when LAG3/FGL1 are co-expressed with PD-1. IMP321 and relatlimab are promising monoclonal antibodies targeting LAG3 in melanoma. The clinical use of anti-FGL1 antibodies has not been reported. Finally, high FGL1 and LAG3 expression induces EGFR-TKI and gefitinib resistance, and anti-PD-1 therapy resistance, respectively. We present a comprehensive overview of the role of LAG3/FGL1 in cancer, suggesting novel anti-tumor therapy strategies.
To obtain wound dressings which could be removed easily without secondary injuries, we prepared thermoresponsive electrospun fiber mats containing poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA). Blend fibers of PDEGMA and poly(l-lactic acid-co-ε-caprolactone) (P(LLA-CL) were fabricated via electrospinning, and analogous fibers containing the antibiotic ciprofloxacin (CIF) were also prepared. Smooth cylindrical fibers were obtained, albeit with a small amount of beading visible for the ciprofloxacin-loaded fibers. X-ray diffraction showed the drug to exist in the amorphous physical form post-electrospinning. The composite fibers showed distinct thermosensitive properties and gave sustained release of CIF over more than 160h in vitro. The fibers could promote the proliferation of fibroblasts, and by varying the temperature cells could easily be attached to and detached from the fibers. Antibacterial tests demonstrated that fibers loaded with ciprofloxacin were effective in inhibiting the growth of E. coli and S. aureus. In vivo investigations on rats indicated that the composite PDEGMA/P(LLA-CL) fibers loaded with CIF had much more potent wound healing properties than a commercial gauze and CIF-loaded fibers made solely of P(LLA-CL). These results demonstrate the potential of PDEGMA/P(LLA-CL)/ciprofloxacin fibers as advanced wound dressing materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.