γ-Aminobutyric acid (GABA) has high physiological activity in plant stress physiology. This study showed that the application of exogenous GABA by root drenching to moderately (MS, 150 mM salt concentration) and severely salt-stressed (SS, 300 mM salt concentration) plants significantly increased endogenous GABA concentration and improved maize seedling growth but decreased glutamate decarboxylase (GAD) activity compared with non-treated ones. Exogenous GABA alleviated damage to membranes, increased in proline and soluble sugar content in leaves, and reduced water loss. After the application of GABA, maize seedling leaves suffered less oxidative damage in terms of superoxide anion (O2·−) and malondialdehyde (MDA) content. GABA-treated MS and SS maize seedlings showed increased enzymatic antioxidant activity compared with that of untreated controls, and GABA-treated MS maize seedlings had a greater increase in enzymatic antioxidant activity than SS maize seedlings. Salt stress severely damaged cell function and inhibited photosynthesis, especially in SS maize seedlings. Exogenous GABA application could reduce the accumulation of harmful substances, help maintain cell morphology, and improve the function of cells during salt stress. These effects could reduce the damage to the photosynthetic system from salt stress and improve photosynthesis and chlorophyll fluorescence parameters. GABA enhanced the salt tolerance of maize seedlings.
Previous reports have indicated that 2-(3,4-dichlorophenoxy)triethylamine (DCPTA) can promote the growth and photosynthetic capacity of plants. However, only a small number of these studies have focused on crops, and few reports have focused on whether DCPTA affects stress tolerance. In this study, maize (Zea mays L.) seedlings were pretreated with or without DCPTA and then exposed to drought stress in a controlled growth room for 7 days, and the growth and photosynthesis indexes of the seedlings were investigated. The DCPTA treatment partly counteracted the observed decreases in biomass, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), effective photochemical efficiency of photosystem II (ΦPSII), maximum photochemical efficiency of PSII (Fv/Fm), non-photochemical quenching (NPQ), and photosynthetic pigment content and increased the minimal fluorescence (Fo) induced by drought stress. The DCPTA treatment also alleviated the damage induced by drought stress in the photosynthetic apparatus. In addition, DCPTA pretreatment simultaneously increased the root size (e.g., the length, surface area, and volume) and root hydraulic conductivity, which promoted the maintenance of higher relative leaf water contents (RLWCs) under stress conditions. These results indicate that exogenous DCPTA ameliorates simulated drought conditions by improving the growth and photosynthetic capacity of maize seedlings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.