Abstract:This study aims to assess future trends in monthly rainfall and temperature and its impacts on surface and groundwater resources in the Bandama basin. The Bandama river is one of the four major rivers of Côte d'Ivoire. Historical data from 14 meteorological and three hydrological stations were used. Simulation results for future climate from HadGEM2-ES model under representative concentration pathway (RCP) 4.5 and RCP 8.5 scenarios indicate that the annual temperature may increase from 1.2 • C to 3 • C. These increases will be greater in the north than in the south of the basin. The monthly rainfall may decrease from December to April in the future. During this period, it is projected to decrease by 3% to 42% at all horizons under RCP 4.5 and by 5% to 47% under RCP 8.5. These variations will have cause an increase in surface and groundwater resources during the three periods (2006-2035; 2041-2060; 2066-2085) under the RCP 4.5 scenario. On the other side, these water resources may decrease for all horizons under RCP 8.5 in the Bandama basin.
West African basins play a vital role in the socio-economic development of the region. They are mostly trans-boundary and sources of different land use practices. This work attempts to assess the spatio-temporal land use and land cover changes over three South Western African basins (Volta, Mono and Sassandra basins) and their influence on discharge. The land use and land cover maps of each basin were developed for 1988, 2002 and 2016. The results show that all the studied basins present an increase in water bodies, built-up, agricultural land and a decline in vegetative areas. These increases in water bodies and land use are as a result of an increase in small reservoirs, of dugouts and of dam constructions. However, the decline in some vegetative clusters could be attributed to the demographic and socio-economic growth as expressed by the expansion of agriculture and urbanization. The basic statistical analysis of precipitation and discharge data reveals that the mean annual discharge varies much more than the total annual precipitation at the three basins. For instance, in the entire Volta basin, the annual precipitation coefficient of variation (CV) is 10% while the annual discharge CV of Nawuni, Saboba and Bui are 43.6%, 36.51% and 47.43%, respectively. In Mono basin, the annual precipitation CV is 11.5% while the Nangbeto and Athieme annual discharge CV are 37.15% and 46.60%, respectively. The annual precipitation CV in Sassandra basin is 7.64% while the annual discharge CV of Soubre and Dakpadou are 29.41% and 37%, respectively. The discharge varies at least three times much more than the precipitation in the studied basins. The same conclusion was found for all months except the driest months (December and January). We showed that this great variation in discharge is mainly due to land use and land cover changes. Beside the hydrological modification of the land use and land cover changes, the climate of the region as well as the water quality and availability and the hydropower generation may be impacted by these changes in land surfaces conditions. Therefore, these impacts should be further assessed to implement appropriate climate services and measures for a sustainable land use and water management.
Climate and land use/cover changes are potential drivers of change in hydrology and water use. Incidences of these factors on Bandama hydrological basin and Kossou hydropower generation (1981–2016) in West Africa are assessed in this present work. Using Landsat products of United Stated Geological Survey, results show that water bodies areas and land use have increased by 1.89%/year and 11.56%/year respectively, whereas herbaceous savanna, savanna, forest and evergreen forest coverage have been reduced by 1.39%/year, 0.02%/year, 2.39%/year and 3.33%/year respectively from 1988 to 2016. Hydroclimatic analysis reveals that streamflow presents greater change in magnitude compared to rainfall though both increasing trends are not statistically significant at annual scale. Streamflow varies at least four (two) times greatly than the rainfall (monthly and seasonally) annually except during driest months probably due to land use/cover change. In contrast, Kossou hydropower generation is significantly decreasing (p-value 0.007) at both monthly and annual scales possibly due to water abstraction at upstream. Further works are required to elucidate the combined effects of land use/cover and climate changes on hydrological system as well as water abstraction on Kossou generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.