Butyrylation plays a crucial role in the cellular processes. Due to limit of techniques, it is a challenging task to identify histone butyrylation sites on a large scale. To fill the gap, we propose an approach based on information entropy and machine learning for computationally identifying histone butyrylation sites. The proposed method achieves 0.92 of area under the receiver operating characteristic (ROC) curve over the training set by 3-fold cross validation and 0.80 over the testing set by independent test. Feature analysis implies that amino acid residues in the down/upstream of butyrylation sites would exhibit specific sequence motif to a certain extent. Functional analysis suggests that histone butyrylation was most possibly associated with four pathways (systemic lupus erythematosus, alcoholism, viral carcinogenesis and transcriptional misregulation in cancer), was involved in binding with other molecules, processes of biosynthesis, assembly, arrangement or disassembly and was located in such complex as consists of DNA, RNA, protein, etc. The proposed method is useful to predict histone butyrylation sites. Analysis of feature and function improves understanding of histone butyrylation and increases knowledge of functions of butyrylated histones.
Motivation Infection with strains of different subtypes and the subsequent crossover reading between the two strands of genomic RNAs by host cells’ reverse transcriptase are the main causes of the vast HIV-1 sequence diversity. Such inter-subtype genomic recombinants can become circulating recombinant forms (CRFs) after widespread transmissions in a population. Complete prediction of all the subtype sources of a CRF strain is a complicated machine learning problem. It is also difficult to understand whether a strain is an emerging new subtype and if so, how to accurately identify the new components of the genetic source. Results We introduce a multi-label learning algorithm for the complete prediction of multiple sources of a CRF sequence as well as the prediction of its chronological number. The prediction is strengthened by a voting of various multi-label learning methods to avoid biased decisions. In our steps, frequency and position features of the sequences are both extracted to capture signature patterns of pure subtypes and CRFs. The method was applied to 7185 HIV-1 sequences, comprising 5530 pure subtype sequences and 1655 CRF sequences. Results have demonstrated that the method can achieve very high accuracy (reaching 99%) in the prediction of the complete set of labels of HIV-1 recombinant forms. A few wrong predictions are actually incomplete predictions, very close to the complete set of genuine labels. Availability https://github.com/Runbin-tang/The-source-of-HIV-CRFs-prediction Contact yuzuguo@aliyun.com;jinyan.li@uts.edu.au Supplementary information Supplementary data are available at Bioinformatics online.
RNA–protein interactions play an indispensable role in many biological processes. Growing evidence has indicated that aberration of the RNA–protein interaction is associated with many serious human diseases. The precise and quick detection of RNA–protein interactions is crucial to finding new functions and to uncovering the mechanism of interactions. Although many methods have been presented to recognize RNA-binding sites, there is much room left for the improvement of predictive accuracy. We present a sequence semantics-based method (called PRIP) for predicting RNA-binding interfaces. The PRIP extracted semantic embedding by pre-training the Word2vec with the corpus. Extreme gradient boosting was employed to train a classifier. The PRIP obtained a SN of 0.73 over the five-fold cross validation and a SN of 0.67 over the independent test, outperforming the state-of-the-art methods. Compared with other methods, this PRIP learned the hidden relations between words in the context. The analysis of the semantics relationship implied that the semantics of some words were specific to RNA-binding interfaces. This method is helpful to explore the mechanism of RNA–protein interactions from a semantics point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.