SUMMARY Upon infection, CD8+ T cells undergo a stepwise process of early activation, expansion and differentiation into effector cells. How these phases are transcriptionally regulated is incompletely defined. Here, we report that interferon regulatory factor 4 (IRF4), dispensable for early CD8+ T cell activation, was vital for sustaining the expansion and effector differentiation of CD8+ T cells. Mechanistically, IRF4 promoted the expression and function of Blimp1 and T-bet, two transcription factors required for CD8+ T cell effector differentiation, while repressed genes that mediate cell cycle arrest and apoptosis. Selective ablation of Irf4 in peripheral CD8+ T cells impaired anti-viral CD8+ T cell responses, viral clearance and CD8+ T cell-mediated host recovery from influenza infection. IRF4 expression was regulated by T cell receptor (TCR) signaling strength via mammalian target of rapamycin (mTOR). Our data reveal that IRF4 translates differential strength of TCR-signaling into different quantitative and qualitative CD8+ T cell responses.
Dominant Vγ2Vδ2 T-cell subset exist only in primates, and recognize phosphoantigen from selected pathogens including M. tuberculosis(Mtb). In vivo function of Vγ2Vδ2 T cells in tuberculosis remains unknown. We conducted mechanistic studies to determine whether earlier expansion/differentiation of Vγ2Vδ2 T cells during Mtb infection could increase immune resistance to tuberculosis in macaques. Phosphoantigen/IL-2 administration specifically induced major expansion and pulmonary trafficking/accumulation of phosphoantigen-specific Vγ2Vδ2 T cells, significantly reduced Mtb burdens and attenuated tuberculosis lesions in lung tissues compared to saline/BSA or IL-2 controls. Expanded Vγ2Vδ2 T cells differentiated into multifunctional effector subpopulations capable of producing anti-TB cytokines IFNγ, perforin and granulysin, and co-producing perforin/granulysin in lung tissue. Mechanistically, perforin/granulysin-producing Vγ2Vδ2 T cells limited intracellular Mtb growth, and macaque granulysin had Mtb-bactericidal effect, and inhibited intracellular Mtb in presence of perforin. Furthermore, phosphoantigen/IL2-expanded Vγ2Vδ2 T effector cells produced IL-12, and their expansion/differentiation led to enhanced pulmonary responses of peptide-specific CD4+/CD8+ Th1-like cells. These results provide first in vivo evidence implicating that early expansion/differentiation of Vγ2Vδ2 T effector cells during Mtb infection increases resistance to tuberculosis. Thus, data support a rationale for conducting further studies of the γδ T-cell-targeted treatment of established TB, which might ultimately help explore single or adjunctive phosphoantigen expansion of Vγ2Vδ2 T-cell subset as intervention of MDR-tuberculosis or HIV-related tuberculosis.
Differentiation, distribution and immune regulation of human IL-22-producing T cells in infections remain unknown. Here, we demonstrated in a nonhuman primate model that M. tuberculosis infection resulted in apparent increases in numbers of T cells capable of producing IL-22 de novo without in vitro Ag stimulation, and drove distribution of these cells more dramatically in lungs than in blood and lymphoid tissues. Consistently, IL-22-producing T cells were visualized in situ in lung tuberculosis (TB) granulomas by confocal microscopy and immunohistochemistry, indicating that mature IL-22-producing T cells were present in TB granuloma. Surprisingly, phosphoantigen HMBPP activation of Vγ2Vδ2 T cells down-regulated the capability of T cells to produce IL-22 de novo in lymphocytes from blood, lung/BAL fluid, spleen and lymph node. Up-regulation of IFNγ-producing Vγ2Vδ2 T effector cells after HMBPP stimulation coincided with the down-regulated capacity of these T cells to produce IL-22 de novo. Importantly, anti-IFNγ neutralizing Ab treatment reversed the HMBPP-mediated down-regulation effect on IL-22-producing T cells, suggesting that Vγ2Vδ2 T-cell-driven IFNγ-networking function was the mechanism underlying the HMBPP-mediated down-regulation of the capability of T cells to produce IL-22. These novel findings raise the possibility to ultimately investigate the function of IL-22 producing T cells and to target Vγ2Vδ2 T cells for balancing potentially hyper-activating IL-22-producing T cells in severe TB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.