Detecting homoclinic orbits is a key problem in nonlinear dynamical systems, especially in the study of bifurcation and chaos. In this paper, we propose a new method to solve the problem with trajectory optimization. By defining a distance between a saddle point and its near trajectories, the problem becomes a common problem in unconstrained nonlinear optimization to minimize the distance. A subdivision algorithm is also proposed in this paper to improve the integrity of results. By applying the algorithm to the Lorenz system, the Shimizu-Morioka system and the hyperchaotic Lorenz system, we successfully find many homoclinic orbits with the corresponding parameters, which suggests that the method is effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.