Thermoresponsive resilin‐like polypeptides (RLPs) of various lengths were genetically fused to two different computationally designed coiled coil‐forming peptides with distinct thermal stability, to develop new strategies to assemble coiled coil peptides via temperature‐triggered phase separation of the RLP units. Their successful production in bacterial expression hosts was verified via gel electrophoresis, mass spectrometry, and amino acid analysis. Circular dichroism (CD) spectroscopy, ultraviolet‐visible (UV/Vis) turbidimetry, and dynamic light scattering (DLS) measurements confirmed the stability of the coiled coils and showed that the thermosensitive phase behavior of the RLPs was preserved in the genetically fused hybrid polypeptides. Cryogenic‐transmission electron microscopy and coarse‐grained modeling revealed that functionalizing the coiled coils with thermoresponsive RLPs leads to their thermally triggered noncovalent assembly into nanofibrillar assemblies.
With the ability to design their sequences and structures, peptides can be engineered to realize a wide variety of functionalities and structures. Herein, computational design was used to identify a set of 17 peptides having a wide range of putative charge states but the same tetrameric coiled-coil bundle structure. Calculations were performed to identify suitable locations for ionizable residues (D, E, K, and R) at the bundle's exterior sites, while interior hydrophobic interactions were retained. The designed bundle structures spanned putative charge states of −32 to +32 in units of electron charge. The peptides were experimentally investigated using spectroscopic and scattering techniques. Thermal stabilities of the bundles were investigated using circular dichroism. Molecular dynamics simulations assessed structural fluctuations within the bundles. The cylindrical peptide bundles, 4 nm long by 2 nm in diameter, were covalently linked to form rigid, micron-scale polymers and characterized using transmission electron microscopy. The designed suite of sequences provides a set of readily realized nanometer-scale structures of tunable charge that can also be polymerized to yield rigid-rod polyelectrolytes.
Thermoresponsive resilin-like polypeptides (RLPs) of various lengths were genetically fused to two different computationally designed coiled coil-forming peptides with distinct thermal stability, to develop new strategies to assemble coiled coil peptides via temperature-triggered phase separation of the RLP units. Their successful production in bacterial expression hosts was verified via gel electrophoresis, mass spectrometry, and amino acid analysis. Circular dichroism (CD) spectroscopy, ultraviolet-visible (UV/Vis) turbidimetry, and dynamic light scattering (DLS) measurements confirmed the stability of the coiled coils and showed that the thermosensitive phase behavior of the RLPs was preserved in the genetically fused hybrid polypeptides. Cryogenic-transmission electron microscopy and coarsegrained modeling revealed that functionalizing the coiled coils with thermoresponsive RLPs leads to their thermally triggered noncovalent assembly into nanofibrillar assemblies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.