BackgroundTo maintain the corrected alignment after high tibial osteotomy (HTO), fixation with titanium locking plate and screws is widely used in current practice; however, screw breakage is a common complication. Thus, this study was to investigate the mechanical stability of HTO with locking plate and various screw fixations, including the length as well as the type.MethodsA finite element (FE) model involving a distal femur, meniscus, and a proximal tibia with HTO fixed with a titanium locking plate and screws was created. The angle of the medial open wedge was 12°, and bone graft was not used. Two types of screws, namely conventional locking and far-cortical locking screws, with various lengths and configurations were used. At the proximal tibia, conventional locking screws with different lengths, 30 and 55 mm, were used; at the tibia shaft, different screw fixations including one-cortical, two-cortical, and far-cortical locking screws were used.ResultsThe use of far-cortical locking screw generated the highest equivalent stress on the screws, which was four times (from 137.3 to 541 MPa) higher than that of the one-cortical screw. Also, it led to the maximum deformation of the tibia and a greater gap deformation at the osteotomy site, which was twice (from 0.222 to 0.442 mm) larger than that of the one-cortical screw. The effect of different locking screw length on tibia deformation and implant stress was minor.ConclusionThus, far-cortical locking screws and plates increase interfragmentary movement but the screw stress is relatively high. Increasing the protection time (partial weight duration) is suggested to decrease the risk of screw breakage in HTO through fixation with titanium far-cortical locking screws and plates.
BackgroundProlonged static sitting in a wheelchair is associated with an increased risk of lower back pain. The wheelchair seating system is a key factor of this risk because it affects spinal loading in the sitting position. In this study, 7 dynamic sitting strategies (DSSs) are examined: lumbar prominent dynamic sitting (LPDS), back reclined dynamic sitting (BRDS), femur upward dynamic sitting (FUDS), lumbar prominent with back reclined dynamic sitting (LBDS), lumbar prominent with femur upward dynamic sitting (LFDS), back reclined with femur upward dynamic sitting (BFDS), and lumbar prominent with back reclined with femur upward dynamic sitting (LBFDS). The objective of this study was to analyze the biomechanical effects of these sitting strategies on lumbar-pelvic angles.MethodsTwenty able-bodied participants were recruited for the study. All participants performed LPDS, BRDS, FUDS, LBDS, LFDS, BFDS, and LBFDS in a random order. All lumbar-pelvic angle parameters, including the static lumbar angle, static pelvic angle, lumbar range of motion, and pelvic range of motion were measured and compared.ResultsResults show that LBDS and LBFDS enabled the most beneficial lumbar movements, although the difference between the 2 strategies was nonsignificant. BRDS and BFDS enabled the most beneficial pelvic movements, although the difference between the 2 strategies was nonsignificant. Among all the upright DSSs, LPDS and LFDS enabled the most beneficial lumbar and pelvic movements, although no significant difference was observed between these 2 strategies.ConclusionsWe identified the effects and differences among 7 DSSs on lumbar-pelvic angles. Wheelchair users can choose the most suitable DSS that meets their needs. These findings may serve as a reference for practicing physicians or wheelchair users to choose an appropriate dynamic wheelchair seating system.Trial registration
ISRCTN12389808, 18th November 2016, retrospectively registered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.