A method of gas chromatography with nitrogen chemiluminescence detection and using standard addition is described for the determination of acrylamide in heat-processed foods. Using a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample preparation method removes the acrylamide precursors completely, and the risk of overestimating acrylamide concentration due to additional analyte formation in the hot gas chromatograph inlet is also avoided. Sample preparation is rapid and inexpensive. A Deans switch device is utilized to heart-cut acrylamide and to prevent interferences from the solvent and matrix from reaching the detector. The pre-column is backflushed at high temperature to maintain a clean baseline and shorten the cycle time compared to baking out the column. Quantitation using standard addition is employed for compensation of potential variability in the acrylamide extraction efficiency in acetonitrile. The limit of detection and the limit of the quantification obtained for this method are 27 and 81 μg/kg, respectively, in food samples (equivalent to 3.5 and 10.6 μg/L in acetonitrile, respectively), and the linear range is 76-9697 μg/kg in food samples (equivalent to 10-1280 μg/L in acetonitrile) with an R(2) value of 0.9999.
Gas chromatography employing a thermal conductivity detector with a nitrogen carrier gas and a molecular sieve 5 Å column is commonly used for the analysis of widely varying hydrogen concentrations. Flow variation of the column, caused by carrier gas adsorption, affects the peak shape and impacts the analytical accuracy. The mechanism and factors affecting the adsorption effect are explored, errors caused by the deviation from the linearity of the detector's response are considered, and practical advice is given for improving the analytical accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.