In order to improve the efficiency and quality of software development, automatic code generation technology is the current focus. The quality of the code generated by the automatic code generation technology is also an important issue. However, existing metrics for code automatic generation ignore that the programming process is a continuous dynamic changeable process. So the metric is a dynamic process. This article proposes a metric method based on dynamic abstract syntax tree (DAST). More specifically, the method first builds a DAST through the interaction in behavior information between the automatic code generation tool and programmer. Then the measurement contents are extracted on the DAST. Finally, the metric is completed with contents extracted. The experiment results show that the method can effectively realize the metrics of automatic code generation. Compared with the MAST method, the method in this article can improve the convergence speed by 80% when training the model, and can shorten the time-consuming by an average of 46% when doing the metric prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.