The role of children in the spread of SARS-CoV-2 remains highly controversial. To address this issue, we performed a meta-analysis of the published literature on household SARS-CoV-2 transmission clusters (n=213 from 12 countries). Only 8 (3.8%) transmission clusters were identified as having a paediatric index case. Asymptomatic index cases were associated with a lower secondary attack in contacts than symptomatic index cases (estimate risk ratio [RR], 0.17; 95% confidence interval [CI], 0.09-0.29). To determine the susceptibility of children to household infections the secondary attack rate (SAR) in paediatric household contacts was assessed. The secondary attack rate in paediatric household contacts was lower than in adult household contacts (RR, 0.62; 95% CI, 0.42-0.91). These data have important implications for the ongoing management of the COVID-19 pandemic, including potential vaccine prioritization strategies.
BACKGROUND: Since its identification on the 7 th of January 2020, SARS-CoV-2 has spread to more than 180 countries worldwide, causing >11,000 deaths. At present, viral disease and transmission amongst children is incompletely understood. Specifically, there is concern that children could be an important source of SARS-CoV-2 in household transmission clusters. METHODS:We performed an observational study analysing literature published between December 2019 and March 2020 of the clinical features of SARS-CoV-2 in children and descriptions of household transmission clusters of SARS-CoV-2. In these studies the index case of each cluster defined as the individual in the household cluster who first developed symptoms.FINDINGS: Drawing on studies from China, Singapore, South Korea, Japan, and Iran a broad range of clinical symptoms were observed in children. These ranged from asymptomatic to severe disease. Of the 31 household transmission clusters that were identified, 9.7% (3/31) were identified as having a paediatric index case. This is in contrast other zoonotic infections (namely H5N1 influenza virus) where 54% (30/56) of transmission clusters identified children as the index case.
This study identified the possible threshold to predict dengue fever (DF) outbreaks using Baidu Search Index (BSI). Time-series classification and regression tree models based on BSI were used to develop a predictive model for DF outbreak in Guangzhou and Zhongshan, China. In the regression tree models, the mean autochthonous DF incidence rate increased approximately 30-fold in Guangzhou when the weekly BSI for DF at the lagged moving average of 1–3 weeks was more than 382. When the weekly BSI for DF at the lagged moving average of 1–5 weeks was more than 91.8, there was approximately 9-fold increase of the mean autochthonous DF incidence rate in Zhongshan. In the classification tree models, the results showed that when the weekly BSI for DF at the lagged moving average of 1–3 weeks was more than 99.3, there was 89.28% chance of DF outbreak in Guangzhou, while, in Zhongshan, when the weekly BSI for DF at the lagged moving average of 1–5 weeks was more than 68.1, the chance of DF outbreak rose up to 100%. The study indicated that less cost internet-based surveillance systems can be the valuable complement to traditional DF surveillance in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.