The National Key Research and Development Program of China, the National Natural Science Foundation of China, the Fundamental Research Funds for the Central Universities, the Guangdong Province Natural Science Foundation, the Career Development Fellowship of Australian National Health and Medical Research Council, and the Early Career Fellowship of Australian National Health and Medical Research Council.
Stimuli‐responsive shape‐transforming hydrogels have shown great potential toward various engineering applications including soft robotics and microfluidics. Despite significant progress in designing hydrogels with ever more sophisticated shape‐morphing behaviors, an ultimate goal yet to be fulfilled is programmable reversible shape transformation. It is reported here that transient structural anisotropy can be programmed into copolymer hydrogels of N‐isopropylacrylamide and stearyl acrylate. Structural anisotropy arises from the deformed hydrophobic domains of the stearyl groups after thermomechanical programming, which serves as a template for the reversible globule‐to‐coil transition of the poly(N‐isopropylacrylamide) chains. The structural anisotropy is transient and can be erased upon cooling. This allows repeated programming for reversible shape transformation, an unknown feature for the current hydrogels. The programmable reversible transformation is expected to greatly extend the technical scope for hydrogel‐based devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.