The signaling mechanisms between prostate cancer cells and infiltrating immune cells may illuminate novel therapeutic approaches. Here, utilizing a prostate adenocarcinoma model driven by loss of Pten and Smad4, we identify polymorphonuclear myeloid-derived suppressor cells (MDSCs) as the major infiltrating immune cell type and depletion of MDSCs blocks progression. Employing a novel dual reporter prostate cancer model, epithelial and stromal transcriptomic profiling identified Cxcl5 as a cancer-secreted chemokine to attract Cxcr2-expressing MDSCs and, correspondingly, pharmacological inhibition of Cxcr2 impeded tumor progression. Integrated analyses identified hyperactivated Hippo-YAP signaling in driving Cxcl5 upregulation in cancer cells through YAP-TEAD complex and promoting MDSCs recruitment. Clinico-pathological studies reveal upregulation and activation of YAP1 in a subset of human prostate tumors, and the YAP1 signature is enriched in primary prostate tumor samples with stronger expression of MDSC relevant genes. Together, YAP-driven MDSC recruitment via heterotypic Cxcl5-Cxcr2 signaling reveals effective therapeutic strategy for advanced prostate cancer. Significance We demonstrate a critical role of MDSCs in prostate tumor progression and discover a cancer cell non-autonomous function of Hippo-YAP pathway in regulation of Cxcl5, a ligand for Cxcr2 expressing MDSCs. Pharmacologic elimination of MDSCs or blocking the heterotypic CxCl5-Cxcr2 signaling circuit elicits robust anti-tumor responses and prolongs survival.
Metabolic reprogramming greatly contributes to the regulation of macrophage activation. However, the mechanism of lipid accumulation and the corresponding function in tumor-associated macrophages (TAMs) remain unclear. With primary investigation in colon cancer and confirmation in other cancer models, here we determine that deficiency of monoacylglycerol lipase (MGLL) results in lipid overload in TAMs. Functionally, macrophage MGLL inhibits CB2 cannabinoid receptor-dependent tumor progression in inoculated and genetic cancer models. Mechanistically, MGLL deficiency promotes CB2/TLR4-dependent macrophage activation, which further suppresses the function of tumor-associated CD8+ T cells. Treatment with CB2 antagonists delays tumor progression in inoculated and genetic cancer models. Finally, we verify that expression of macrophage MGLL is decreased in cancer tissues and positively correlated with the survival of cancer patients. Taken together, our findings identify MGLL as a switch for CB2/TLR4-dependent macrophage activation and provide potential targets for cancer therapy.
The Cucurbitaceae family (cucurbit) includes several economically important crops, such as melon, cucumber, watermelon, pumpkin, squash and gourds. During the past several years, genomic and genetic data have been rapidly accumulated for cucurbits. To store, mine, analyze, integrate and disseminate these large-scale datasets and to provide a central portal for the cucurbit research and breeding community, we have developed the Cucurbit Genomics Database (CuGenDB; http://cucurbitgenomics.org) using the Tripal toolkit. The database currently contains all available genome and expressed sequence tag (EST) sequences, genetic maps, and transcriptome profiles for cucurbit species, as well as sequence annotations, biochemical pathways and comparative genomic analysis results such as synteny blocks and homologous gene pairs between different cucurbit species. A set of analysis and visualization tools and user-friendly query interfaces have been implemented in the database to facilitate the usage of these large-scale data by the community. In particular, two new tools have been developed in the database, a ‘SyntenyViewer’ to view genome synteny between different cucurbit species and an ‘RNA-Seq’ module to analyze and visualize gene expression profiles. Both tools have been packed as Tripal extension modules that can be adopted in other genomics databases developed using the Tripal system.
Background: Mesenchymal stem cells (MSCs) can be isolated from various tissues and can present themselves as a promising cell source for cell-based therapies. Although adipose- and bone marrow–derived mesenchymal stem cells have already been used in a considerable number of clinical trials for osteoarthritis treatment, systematic analyses from single- to bulk-cell resolution as well as clinical outcomes of these 2 MSCs are still insufficient. Purpose: To explore the characteristics and differences of adipose-derived stem cells (ADSCs) and bone marrow MSCs (BMSCs) at single- and bulk-cell levels, to study the clinical outcomes of these 2 cells on the treatment of osteoarthritis, and to provide potential guidance on the more precise clinical application of these MSCs. Study Design: Controlled laboratory study and meta-analysis. Methods: Same donor–derived ADSCs and BMSCs were isolated and cultured. Single- and bulk-cell assays were used to identify the characteristics of these 2 cells. Meta-analysis of clinical trials was done to compare the clinical therapeutic effects in osteoarthritis treatment with ADSCs and BMSCs. Results: Single-cell RNA sequencing analysis showed that the population of ADSCs showed lower transcriptomic heterogeneity when compared with BMSCs. Additionally, as compared with BMSCs, ADSCs were less dependent on mitochondrial respiration for energy production. Furthermore, ADSCs had a lower expression level of human leukocyte antigen class I antigen and higher immunosuppression capacity when compared with the BMSC population. Meta-analysis of current clinical trials of osteoarthritis treatment with MSCs consistently showed that ADSCs are more stable than BMSCs in their therapeutic effect. Conclusion: These results provide basic biological insights into human ADSCs and BMSCs at the single-cell resolution. Findings indicated that ADSCs may be a more controllable stem cell source, may be more adaptable to surviving in the hypoxic articular cavity niche, and may exhibit superiority in regulating inflammation. Based on the meta-analysis results of the different characteristics of ADSCs and BMSCs, ADSCs were implicated as being a better cell source for osteoarthritis treatment. Clinical Relevance: These results guide a more precise clinical application of adipose and bone marrow mesenchymal stem cells.
Accumulating data indicate that long noncoding RNAs (lncRNAs) serve as important modulators in biological processes and are dysregulated in diverse tumors. The function of FOXD2-AS1 in gastric cancer (GC) progression and related biological mechanisms remain undefined. A comprehensive analysis identified that FOXD2-AS1 enrichment was upregulated markedly in GC and positively correlated with a large tumor size, a later pathologic stage, and a poor prognosis. Gene-set enrichment analysis (GSEA) in GEO datasets uncovered that cell cycle and DNA replication associated genes were enriched in patients with high FOXD2-AS1 expression. Loss of FOXD2-AS1 function inhibited cell growth via inhibiting the cell cycle in GC, whereas upregulation of FOXD2-AS1 expression promoted cancer progression. The enhancer of zeste homolog 2 (EZH2) and lysine (K)-specific demethylase 1A (LSD1) proteins were found to serve as binding partners of FOXD2-AS1 and mediators of FOXD2-AS1 function. Mechanically, FOXD2-AS1 promoted GC tumorigenesis partly through EZH2 and LSD1 mediated EphB3 downregulation. The present results revealed that FOXD2-AS1 acted as a tumor inducer in GC partly through EphB3 inhibition by direct interaction with EZH2 and LSD1, and may prove to be a potential biomarker of carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.