Metabolic reprogramming greatly contributes to the regulation of macrophage activation. However, the mechanism of lipid accumulation and the corresponding function in tumor-associated macrophages (TAMs) remain unclear. With primary investigation in colon cancer and confirmation in other cancer models, here we determine that deficiency of monoacylglycerol lipase (MGLL) results in lipid overload in TAMs. Functionally, macrophage MGLL inhibits CB2 cannabinoid receptor-dependent tumor progression in inoculated and genetic cancer models. Mechanistically, MGLL deficiency promotes CB2/TLR4-dependent macrophage activation, which further suppresses the function of tumor-associated CD8+ T cells. Treatment with CB2 antagonists delays tumor progression in inoculated and genetic cancer models. Finally, we verify that expression of macrophage MGLL is decreased in cancer tissues and positively correlated with the survival of cancer patients. Taken together, our findings identify MGLL as a switch for CB2/TLR4-dependent macrophage activation and provide potential targets for cancer therapy.
Acute myeloid leukemia (AML) is a heterogeneous disorder of the hematopoietic system with no common genetic “Achilles heel” that can be targeted. Most patients respond well to standard therapy, while a majority relapse, and development of an effective therapy for AML patients is still urgently needed. In this study, we demonstrated that betulinic acid (BA) significantly increased Aryl hydrocarbon receptor (AHR) expression through demethylation on the AHR promoter in AML cells, and the increased AHR expression interacts with and sequesters ARNT, subsequently suppressing hypoxia-inducible factor-1α (HIF1α) pathway. We also found that histone deacetylase inhibitor chidamide (CDM) treatment significantly increased p300 over-acetylation in AML cells with dissociation of p300 with HIF1α, and subsequently suppressed the HIF1α pathway. Further investigation showed that BA/CDM combination additively increased generation of reactive oxygen species (ROS) with DNA damage, apoptosis and mitochondrial dysfunction. Also, BA/CDM combination additively suppressed the HIF1α pathway with decreased VEGF expression. in vivo mice study showed that BA/CDM combination significantly suppressed AML tumor growth, and overexpression of SOD2 and a constitutive HIF1α (HIF1C) completely diminished this effect. We conclude that a BA/CDM combination inhibits AML tumors through ROS over-generation and HIF1α pathway suppression. This is the first time we have shown the potential effect and possible mechanism of BA and CDM on the inhibition of AML tumor growth.
Variants in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with increased risk for familial and sporadic Parkinson’s disease (PD). Pathogenic variants in LRRK2, including the common variant G2019S, result in increased LRRK2 kinase activity, supporting the therapeutic potential of LRRK2 kinase inhibitors for PD. To better understand the role of LRRK2 in disease and to support the clinical development of LRRK2 inhibitors, quantitative and high-throughput assays to measure LRRK2 levels and activity are needed. We developed and applied such assays to measure the levels of LRRK2 as well as the phosphorylation of LRRK2 itself or one of its substrates, Rab10 (pT73 Rab10). We observed increased LRRK2 activity in various cellular models of disease, including iPSC-derived microglia, as well as in human subjects carrying the disease-linked variant LRRK2 G2019S. Capitalizing on the high-throughput and sensitive nature of these assays, we detected a significant reduction in LRRK2 activity in subjects carrying missense variants in LRRK2 associated with reduced disease risk. Finally, we optimized these assays to enable analysis of LRRK2 activity following inhibition in human peripheral blood mononuclear cells (PBMCs) and whole blood, demonstrating their potential utility as biomarkers to assess changes in LRRK2 expression and activity in the clinic.
BackgroundRecent literatures indicate that maternal hormone exposure is a risk factor for autism spectrum disorder (ASD). We hypothesize that prenatal progestin exposure may counteract the neuroprotective effect of estrogen and contribute to ASD development, and we aim to develop a method to ameliorate prenatal progestin exposure-induced autism-like behavior.MethodsExperiment 1: Prenatal progestin exposure-induced offspring are treated with resveratrol (RSV) through either prenatal or postnatal exposure and then used for autism-like behavior testing and other biomedical analyses. Experiment 2: Prenatal norethindrone (NET) exposure-induced offspring are treated with ERβ knockdown lentivirus together with RSV for further testing. Experiment 3: Pregnant dams are treated with prenatal NET exposure together with RSV, and the offspring are used for further testing.ResultsEight kinds of clinically relevant progestins were used for prenatal exposure in pregnant dams, and the offspring showed decreased ERβ expression in the amygdala with autism-like behavior. Oral administration of either postnatal or prenatal RSV treatment significantly reversed this effect with ERβ activation and ameliorated autism-like behavior. Further investigation showed that RSV activates ERβ and its target genes by demethylation of DNA and histone on the ERβ promoter, and then minimizes progestin-induced oxidative stress as well as the dysfunction of mitochondria and lipid metabolism in the brain, subsequently ameliorating autism-like behavior.ConclusionsWe conclude that resveratrol ameliorates prenatal progestin exposure-induced autism-like behavior through ERβ activation. Our data suggest that prenatal progestin exposure is a strong risk factor for autism-like behavior. Many potential clinical progestin applications, including oral contraceptive pills, preterm birth drugs, and progestin-contaminated drinking water or seafood, may be risk factors for ASD. In addition, RSV may be a good candidate for clinically rescuing or preventing ASD symptoms in humans, while high doses of resveratrol used in the animals may be a potential limitation for human application.Electronic supplementary materialThe online version of this article (10.1186/s13229-018-0225-5) contains supplementary material, which is available to authorized users.
We have previously reported that prenatal progestin exposure induces autism-like behavior in offspring through ERβ (estrogen receptor β) suppression in the brain, indicating that progestin may induce autism spectrum disorders (ASD). In this study, we aim to investigate whether prenatal progestin exposure is associated with ASD. A population-based case-control epidemiology study was conducted in Hainan province of China. The ASD children were first screened with the Autism Behavior Checklist (ABC) questionnaire, and then diagnosed by clinical professionals using the ASD diagnosis criteria found in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). Eventually, 235 cases were identified as ASD from 37863 children aged 0–6 years old, and 682 matched control subjects with typically developing children were selected for the analysis of potential impact factors on ASD prevalence using multivariate logistic regression. Our data show that the ASD prevalence rate in Hainan was 0.62% with a boy:girl ratio of 5.4:1. Interestingly, we found that the following factors were strongly associated with ASD prevalence: use of progestin to prevent threatened abortion, use of progestin contraceptives at the time of conception, and prenatal consumption of progestin-contaminated seafood during the first trimester of pregnancy. All the above factors were directly or indirectly involved with prenatal progestin exposure. Additionally, we conducted in vivo experiments in rats to further confirm our findings. Either endogenous (progesterone) or synthetic progestin (norethindrone)-treated seafood zebrafish were used to feed pregnant dams, and the subsequent offspring showed autism-like behavior, which further demonstrated that prenatal progestin exposure may induce ASD. We conclude that prenatal progestin exposure may be associated with ASD development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.