Metabolic reprogramming greatly contributes to the regulation of macrophage activation. However, the mechanism of lipid accumulation and the corresponding function in tumor-associated macrophages (TAMs) remain unclear. With primary investigation in colon cancer and confirmation in other cancer models, here we determine that deficiency of monoacylglycerol lipase (MGLL) results in lipid overload in TAMs. Functionally, macrophage MGLL inhibits CB2 cannabinoid receptor-dependent tumor progression in inoculated and genetic cancer models. Mechanistically, MGLL deficiency promotes CB2/TLR4-dependent macrophage activation, which further suppresses the function of tumor-associated CD8+ T cells. Treatment with CB2 antagonists delays tumor progression in inoculated and genetic cancer models. Finally, we verify that expression of macrophage MGLL is decreased in cancer tissues and positively correlated with the survival of cancer patients. Taken together, our findings identify MGLL as a switch for CB2/TLR4-dependent macrophage activation and provide potential targets for cancer therapy.
Tendon injuries are common musculoskeletal system disorders in clinical, but the regeneration ability of tendon is limited. Tendon stem cells (TSCs) have shown promising effect on tissue engineering and been used for the treatment of tendon injury. Exosomes that serve as genetic information carriers have been implicated in many diseases and physiological processes, but effect of exosomes from TSCs on tendon injury repair is unclear. The aim of this study is to make clear that the effect of exosomes from TSCs on tendon injury healing. Exosomes were harvested from conditioned culture media of TSCs by a sequential centrifugation process. Rat Achilles tendon tendinopathy model was established by collagenase‐I injection. This was followed by intra‐Achilles‐tendon injection with TSCs or exosomes. Tendon healing and matrix degradation were evaluated by histology analysis and biomechanical test at the post‐injury 5 weeks. In vitro, TSCs treated with interleukin 1 beta were added by conditioned medium including exosomes or not, or by exosomes or not. Tendon matrix related markers and tenogenesis related markers were measured by immunostaining and western blot. We found that TSCs injection and exosomes injection significantly decreased matrix metalloproteinases (MMP)‐3 expression, increased expression of tissue inhibitor of metalloproteinase‐3 (TIMP‐3) and Col‐1a1, and increased biomechanical properties of the ultimate stress and maximum loading. In vitro, conditioned medium with exosomes and exosomes also significantly decreased MMP‐3, and increased expression of tenomodulin, Col‐1a1 and TIMP‐3. Exosomes from TSCs could be an ideal therapeutic strategy in tendon injury healing for its balancing tendon extracellular matrix and promoting the tenogenesis of TSCs.
Purpose: To establish a sensitive and specific isolation and enumeration system for circulating tumor cells (CTC) in patients with hepatocellular carcinoma (HCC).Experimental Design: HCC cells were bound by biotinylated asialofetuin, a ligand of asialoglycoprotein receptor, and subsequently magnetically labeled by antibiotin antibody-coated magnetic beads, followed by magnetic separation. Isolated HCC cells were identified by immunofluorescence staining using Hep Par 1 antibody. The system was used to detect CTCs in 5 mL blood. Blood samples spiked with Hep3B cells (ranging from 10 to 810 cells) were used to determine recovery and sensitivity. Prevalence of CTCs was examined in samples from HCC patients, healthy volunteers, and patients with benign liver diseases or non-HCC cancers. CTC samples were also analyzed by FISH.Results: The average recovery was 61% or more at each spiking level. No healthy, benign liver disease or non-HCC cancer subjects had CTCs detected. CTCs were identified in 69 of 85 (81%) HCC patients, with an average of 19 AE 24 CTCs per 5 mL. Both the positivity rate and the number of CTCs were significantly correlated with tumor size, portal vein tumor thrombus, differentiation status, and the disease extent as classified by the TNM (tumor-node-metastasis) classification and the Milan criteria. HER-2 gene amplification and TP53 gene deletion were detected in CTCs.Conclusion: Our system provides a new tool allowing for highly sensitive and specific detection and genetic analysis of CTCs in HCC patients. It is likely clinically useful in diagnosis and monitoring of HCC and may have a role in clinical decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.