Protein motions control enzyme catalysis through mechanisms that are incompletely understood. Here NMR 13 C relaxation dispersion experiments were used to monitor changes in side-chain motions that occur in response to activation by phosphorylation of the MAP kinase ERK2. NMR data for the methyl side chains on Ile, Leu, and Val residues showed changes in conformational exchange dynamics in the microsecond-to-millisecond time regime between the different activity states of ERK2. In inactive, unphosphorylated ERK2, localized conformational exchange was observed among methyl side chains, with little evidence for coupling between residues. Upon dual phosphorylation by MAP kinase kinase 1, the dynamics of assigned methyls in ERK2 were altered throughout the conserved kinase core, including many residues in the catalytic pocket. The majority of residues in active ERK2 fit to a single conformational exchange process, with k ex ≈ 300 s −1 (k AB ≈ 240 s −1 /k BA ≈ 60 s −1 ) and p A /p B ≈ 20%/80%, suggesting global domain motions involving interconversion between two states. A mutant of ERK2, engineered to enhance conformational mobility at the hinge region linking the N-and C-terminal domains, also induced two-state conformational exchange throughout the kinase core, with exchange properties of k ex ≈ 500 s −1 (k AB ≈ 15 s −1 /k BA ≈ 485 s −1 ) and p A /p B ≈ 97%/3%. Thus, phosphorylation and activation of ERK2 lead to a dramatic shift in conformational exchange dynamics, likely through release of constraints at the hinge.T he MAP kinase, extracellular signal-regulated kinase 2 (ERK2), is a key regulator of cell signaling and a model for protein kinase activation mechanisms (1). ERK2 can be activated by MAP kinase kinases 1 and 2 (MKK1 and 2) through dual phosphorylation of Thr and Tyr residues located at the activation loop (Thr183 and Tyr185, numbered in rat ERK2) (1, 2). Phosphorylation at both sites is required for kinase activation, resulting in increased phosphoryl transfer rate and enhanced affinity for ATP and substrate (3).Conformational changes accompanying the activation of ERK2 have been documented by X-ray structures of the inactive, unphosphorylated (0P-ERK2) and the active, dual-phosphorylated (2P-ERK2) forms (4, 5). Phosphorylation rearranges the activation loop, leading to new ion-pair interactions between phosphoThr and phospho-Tyr residues and basic residues in the N-and C-terminal domains of the kinase core structure. This leads to a repositioning of active site residues surrounding the catalytic base, enabling recognition of the Ser/Thr-Pro sequence motif at phosphorylation sites and exposing a recognition site for interactions with docking sequences in substrates and scaffolds (6).Less is known about how changes in internal motions contribute to kinase activation. Previous studies using hydrogenexchange mass spectrometry (HX-MS) and electron paramagnetic resonance spectroscopy (7-9) led to a model where conformational mobility at the hinge linking the N-and C-terminal domains is increased by phosph...
Conformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and R. We show that ERK inhibitors Vertex-11e and SCH772984 exploit the small energetic difference between L and R to shift the equilibrium in opposing directions. An X-ray structure of active 2P-ERK2 complexed with AMP-PNP reveals a shift in the Gly-rich loop along with domain closure to position the nucleotide in a more catalytically productive conformation relative to inactive 0P-ERK2:ATP. X-ray structures of 2P-ERK2 complexed with Vertex-11e or GDC-0994 recapitulate this closure, which is blocked in a complex with a SCH772984 analog. Thus, the L→R shift in 2P-ERK2 is associated with movements needed to form a competent active site. Solution measurements by hydrogen-exchange mass spectrometry (HX-MS) reveal distinct binding interactions for Vertex-11e, GDC-0994, and AMP-PNP with active vs. inactive ERK2, where the extent of HX protection correlates with R state formation. Furthermore, Vertex-11e and SCH772984 show opposite effects on HX near the activation loop. Consequently, these inhibitors differentially affect MAP kinase phosphatase activity toward 2P-ERK2. We conclude that global motions in ERK2 reflect conformational changes at the active site that promote productive nucleotide binding and couple with changes at the activation loop to allow control of dephosphorylation by conformationally selective inhibitors.
Probiotics were found to be effective in ameliorating the microbial dysbiosis and inflammation caused by intestinal pathogens. However, biological challenges encountered during oral delivery have greatly limited their potential health benefits. Here, a model probiotic (Lactobacillus rhamnosus) was encapsulated in an intestinal-targeted hydrogel to alleviate bacterial enteritis in a novel mode. The hydrogel was prepared simply by the self-cross-linking of thiolated hyaluronic acid. Upon exposure to H 2 S which were excreted by surrounding intestinal pathogens, the hydrogel can locally degrade and rapidly release cargos to compete with source pathogens in turn for binding to the host. The mechanical properties of hydrogel were studied by rheological analysis, and the ideal stability was achieved at a polymer concentration of 4% (w/v). The morphology of the optimal encapsulation system was further measured by a scanning electron microscope, exhibiting uniform payload of probiotics. Endurance experiments indicated that the encapsulation of L. rhamnosus significantly enhanced their viability under gastrointestinal tract insults. Compared with free cells, encapsulated L. rhamnosus exerted better therapeutic effect against Salmonella-induced enteritis with negligible toxicity in vivo. These results demonstrate that this redox-responsive hydrogel may be a promising encapsulation and delivery system for improving the efficacy of orally administered probiotics.
The 3-phosphoinositide-dependent protein kinase 1 (PDK1) is a conserved master regulator of AGC kinases in eukaryotic organisms. pdk1 loss of function causes a lethal phenotype in animals and yeasts, but only mild phenotypic defects in Arabidopsis thaliana (Arabidopsis). The Arabidopsis genome contains two PDK1-encoding genes, PDK1 and PDK2. Here, we used clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) to generate true loss-of-function pdk1 alleles, which, when combined with pdk2 alleles, showed severe developmental defects including fused cotyledons, a short primary root, dwarf stature and defects in male fertility. We obtained evidence that PDK1 is responsible for AGC1 kinase PROTEIN KINASE ASSOCIATED WITH BRX (PAX) activation by phosphorylation during vascular development, and that the PDK1 phospholipid-binding Pleckstrin Homology domain is not required for this process. Our data indicate that PDK1 regulates polar auxin transport by activating AGC1 clade kinases, resulting in PIN phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.