Blood-circulating miRNAs could be useful as a biomarker to detect lung cancer early. We investigated the serum levels of four different miRNAs in patients with non-small cell lung cancer (NSCLC) and assessed their diagnostic value for NSCLC. Serum samples from 112 NSCLC patients and 104 controls (20 current smokers without lung cancer, 23 pneumonia patients, 21 gastric cancer patients, and 40 healthy controls) were subjected to Taqman probe-based quantitative reverse transcription–polymerase chain reaction (RT-PCR). The data showed that the serum levels of miR-182, miR-183, and miR-210 were significantly upregulated and that the miR-126 level was significantly downregulated in NSCLC patients, compared with the healthy controls. Further receiver operating characteristic (ROC) curve analysis revealed that the serum miR-182, miR-183, miR-210, or miR-126 level could serve as a diagnostic biomarker for NSCLC early detection, with a high sensitivity and specificity. The combination of these four miRNAs with carcinoembryonic antigen (CEA) further increased the diagnostic value, with an area under the curve (AUC) of 0.965 (sensitivity, 81.3%; specificity, 100.0%; and accuracy, 90.8%) using logistic regression model analysis. In addition, the relative levels of serum miR-182, miR-183, miR-210, and miR-126 could distinguish NSCLC or early-stage NSCLC from current tobacco smokers without lung cancer and pneumonia or gastric cancer patients with a high sensitivity and specificity. Data from the current study validated that the four serum miRNAs could serve as a tumor biomarker for NSCLC early diagnosis.
Abstract. Lung adenocarcinoma, characterized by its early and aggressive local invasion and high metastatic potential, is the most frequently observed histological type of non-small-cell lung cancer (NSCLC). Visceral pleural invasion (VPI) caused by peripheral lung adenocarcinomas is closely associated with the poor prognosis of patients with NSCLC. The association between VPI and some clinicopathological characteristics has been observed in the past few decades. However, the molecular mechanism of VPI in lung adenocarcinomas is unknown. In the present, the expression level of microRNA (miR-)135b and epidermal growth factor receptor (EGFR) mutations using the reverse transcription-quantitative polymerase chain reaction and DNA sequencing, respectively. In addition, the present study aimed at exploring the association between the miR-135b level, EGFR mutations and VPI in peripheral lung adenocarcinoma. The results of the present study demonstrated that miR-135b was significantly upregulated in lung adenocarcinoma compared with adjacent normal tissue and positively associated EGFR mutations in peripheral lung adenocarcinoma. Furthermore, it was identified that lung adenocarcinomas with EGFR mutations and miR-135b overexpression were more likely to invade visceral pleura. Taken together, these findings indicate that miR-135b overexpression is positively associated with mutations to EGFR, which may promote the development of peripheral lung adenocarcinomas by the formation of VPI. This indicates that the two factors may serve as prognostic markers and molecular targets for the treatment of peripheral lung adenocarcinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.