SummaryNaturally-occurring regulatory T cells (Tregs) are emerging as key regulators of immune responses to self-tissues and infectious agents. Insight has been gained into the cell types and the cellular events that are regulated by Tregs. Indeed, Tregs have been implicated in the control of initial activation events, proliferation, differentiation and effector function. However, the mechanisms by which Tregs disable their cellular targets are not well understood. Here we review recent advances in the identification of distinct mechanisms of Treg action and of signals that enable cellular targets to escape regulation. Roles for inhibitory cytokines, cytotoxic molecules, modulators of cAMP and cytokine competition have all been demonstrated. The growing number of inhibitory mechanisms ascribed to Tregs suggests that Tregs take a multi-pronged approach to immune regulation. It is likely that the relative importance of each inhibitory mechanism is context dependent and modulated by the inflammatory milieu and the magnitude of the immune response. In addition, the target cell may be differentially susceptible or resistant to distinct Treg mechanisms depending on their activation or functional status at the time of the Treg encounter. Understanding when and where each suppressive tool is most effective will help to fine tune therapeutic strategies to promote or constrain specific arms of Treg suppression.
Background Angiogenesis is the process of neovascularization from pre-existing vasculature and is involved in various physiological and pathological processes. Inhibitors of angiogenesis, administered either as individual drugs or in combination with other chemotherapy, have been shown to benefit patients with various cancers. Endostatin, a 20-kDa C-terminal fragment of type XVIII collagen, is one of the most potent inhibitors of angiogenesis. Scope of review We discuss the biology behind endostatin in the context of its endogenous production, the various receptors to which it binds, and the mechanisms by which it acts. We focus on its inhibitory role in angiogenesis, lymphangiogenesis, and cancer metastasis. We also present emerging clinical applications for endostatin and its potential as a therapeutic agent in the form a short peptide. Major conclusions The delicate balance between pro- and anti-angiogenic factors can be modulated to result in physiological wound healing or pathological tumor metastasis. Research in the last decade has emphasized an emerging clinical potential for endostatin as a biomarker and as a therapeutic short peptide. Moreover, elevated or depressed endostatin levels in diseased states may help explain the pathophysiological mechanisms of the particular disease. General significance Endostatin was once sought after as the ‘be all and end all’ for cancer treatment; however, research throughout the last decade has made it apparent that endostatin’s effects are complex and involve multiple mechanisms. A better understanding of newly discovered mechanisms and clinical applications still has the potential to lead to future advances in the use of endostatin in the clinic.
The severe acute respiratory syndrome (SARS) is caused by infection with the SARS-associated coronavirus (SARS-CoV) and characterized by severe pulmonary inflammation and fibrosis. In this study, the development of autoantibodies against human epithelial cells and endothelial cells in patients with SARS at different time periods (the first week: phase I, 1 month after the disease onset: phase II/phase III) were investigated. Antibodies in sera of patients and healthy controls against: (1) A549 human pulmonary epithelial cell-line, (2) human umbilical venous endothelial cells (HUVEC), (3) primary human pulmonary endothelial cells (HPEC) were detected by cell-based ELISA and indirect immunofluorescence staining. The results revealed that serum levels of IgG anti-A549 cells antibodies, IgG anti-HUVEC antibodies, and IgM anti-HPEC antibodies were significantly higher in SARS patients at phase II/phase III than those in healthy controls. Sera from SARS patients at phase II/phase III could mediate complement dependent cytotoxicity against some A549 cells and HPEC. It is concluded that some autoantibodies against human epithelial cells and endothelial cells would be developed after SARS-CoV infection and this phenomenon may indicate post-infectious cellular injury and also induce SARS-induced immunopathology.
Corneal transplantation has been proven effective for returning the gift of sight to those affected by corneal disorders such as opacity, injury, and infections that are a leading cause of blindness. Immune privilege plays an important role in the success of corneal transplantation procedures; however, immune rejection reactions do occur, and they, in conjunction with a shortage of corneal donor tissue, continue to pose major challenges. Corneal immune privilege is important to the success of corneal transplantation and closely related to the avascular nature of the cornea. Corneal avascularity may be disrupted by the processes of angiogenesis and lymphangiogenesis, and for this reason, these phenomena have been a focus of research in recent years. Through this research, therapies addressing certain rejection reactions related to angiogenesis have been developed and implemented. Corneal donor tissue shortages also have been addressed by the development of new materials to replace the human donor cornea. These advancements, along with other improvements in the corneal transplantation procedure, have contributed to an improved success rate for corneal transplantation. We summarize recent developments and improvements in corneal transplantation, including the current understanding of angiogenesis mechanisms, the anti-angiogenic and anti-lymphangiogenic factors identified to date, and the new materials being used. Additionally, we discuss future directions for research in corneal transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.