To gain a better understanding of salt stress responses in plants, we used a proteomic approach to investigate changes in rice (Oryza sativa) root plasma-membrane-associated proteins following treatment with 150 mmol/L NaCl. With or without a 48 h salt treatment, plasma membrane fractions from root tip cells of a salt-sensitive rice cultivar, Wuyunjing 8, were purified by PEG aqueous two-phase partitioning, and plasma-membrane-associated proteins were separated by IEF/SDS-PAGE using an optimized rehydration buffer. Comparative analysis of three independent biological replicates revealed that the expressions of 18 proteins changed by more than 1.5-fold in response to salt stress. Of these proteins, nine were upregulated and nine were down-regulated. MS analysis indicated that most of these membraneassociated proteins are involved in important physiological processes such as membrane stabilization, ion homeostasis, and signal transduction. In addition, a new leucine-rich-repeat type receptor-like protein kinase, OsRPK1, was identified as a salt-responding protein.Immuno-blots indicated that OsRPK1 is also induced by cold, drought, and abscisic acid. Using immuno-histochemical techniques, we determined that the expression of OsRPK1 was localized in the plasma membrane of cortex cells in roots. The results suggest that different rice cultivars might have different salt stress response mechanisms.
In this study, we identified and functionally characterized the mitochondrial heat shock protein 70 (mtHsp70). Over-expression of mtHsp70 suppressed heat- and H(2)O(2)-induced programmed cell death (PCD) in rice protoplasts, as reflected by higher cell viability, decreased DNA laddering and chromatin condensation. Mitochondrial membrane potential (Δψ(m)) after heat shock was destroyed gradually in protoplasts, but mtHsp70 over-expression showed higher Δψ(m) relative to the vector control cells, and partially inhibited cytochrome c release from mitochondria to cytosol. Heat treatment also significantly increased reactive oxygen species (ROS) generation, a phenomenon not observed in protoplasts over-expressing mtHsp70. Together, these results suggest that mtHsp70 may suppress PCD in rice protoplasts by maintaining mitochondrial Δψ(m) and inhibiting the amplification of ROS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.