Extensive and in-depth investigations of high-altitude adaptation have been carried out at the level of morphology, anatomy, physiology and genomics, but few investigations focused on the roles of microRNA (miRNA) in high-altitude adaptation. We examined the differences in the miRNA transcriptomes of two representative hypoxia-sensitive tissues (heart and lung) between yak and cattle, two closely related species that live in high and low altitudes, respectively. In this study, we identified a total of 808 mature miRNAs, which corresponded to 715 pre-miRNAs in the two species. The further analysis revealed that both tissues showed relatively high correlation coefficient between yak and cattle, but a greater differentiation was present in lung than heart between the two species. In addition, miRNAs with significantly differentiated patterns of expression in two tissues exhibited co-operation effect in high altitude adaptation based on miRNA family and cluster. Functional analysis revealed that differentially expressed miRNAs were enriched in hypoxia-related pathways, such as the HIF-1α signaling pathway, the insulin signaling pathway, the PI3K-Akt signaling pathway, nucleotide excision repair, cell cycle, apoptosis and fatty acid metabolism, which indicated the important roles of miRNAs in high altitude adaptation. These results suggested the diverse degrees of miRNA transcriptome variation in different tissues between yak and cattle, and suggested extensive roles of miRNAs in high altitude adaptation.
Background There are hundreds of phenotypically distinguishable domestic chicken breeds or lines with highly specialized traits worldwide, which provide a unique opportunity to illustrate how selection shapes patterns of genetic variation. There are many local chicken breeds in China. Results Here, we provide a population genome landscape of genetic variations in 86 domestic chickens representing 10 phenotypically diverse breeds. Genome-wide analysis indicated that sex chromosomes have less genetic diversity and are under stronger selection than autosomes during domestication and local adaptation. We found an evidence of admixture between Tibetan chickens and other domestic population. We further identified strong signatures of selection affecting genomic regions that harbor genes underlying economic traits (typically related to feathers, skin color, growth, reproduction and aggressiveness) and local adaptation (to high altitude). By comparing the genomes of the Tibetan and lowland fowls, we identified genes associated with high-altitude adaptation in Tibetan chickens were mainly involved in energy metabolism, body size maintenance and available food sources. Conclusions The work provides crucial insights into the distinct evolutionary scenarios occurring under artificial selection for agricultural production and under natural selection for success at high altitudes in chicken. Several genes were identified as candidates for chicken economic traits and other phenotypic traits. Electronic supplementary material The online version of this article (10.1186/s12864-019-5622-4) contains supplementary material, which is available to authorized users.
Due to the increasing demand for producing chickens with high meat quality, there is a need to determine its mode of action on chicken meat quality traits across a wider age spectrum. In this study, five groups of 200 male Da-Heng meat type birds were reared until slaughter age of 60, 90, 120, 150, 180 days old and breast muscle performance, meat quality traits, and myofiber characteristics were evaluated. The larger body weight and breast weight of chicken are based on larger myofiber diameter and area, less myofiber density for the older birds than younger birds. There was an age effect on all meat quality traits of chicken breast muscle (p < 0.05). Older chickens often presented a higher pH, lower drip loss, higher shear force, darker, and redder breast meat. The correlation coefficients showed that myofiber characteristics played an important role in breast pH values, drip loss, and meat color (p < 0.05). Besides, significant correlations were also found between meat quality traits (p < 0.05). Further studies are needed to explore the biochemical character and potential molecular mechanism of chicken breast muscle to determine the factors that causes these age-related differences in meat quality in the current study.
Objective: This study aimed to explore the role of miR-126 in coronary artery disease (CAD) patients and the potential gene targets of miR-126 in atherosclerosis. Methodology: A total of 60 CAD patients and 25 healthy control subjects were recruited in this study. Among the 60 CAD patients, 18 cases were diagnosed of stable angina pectoris (SAP), 20 were diagnosed of unstable angina pectoris (UAP) and 22 were diagnosed of acute myocardial infarction (AMI). Plasma miR-126 levels from both groups of participants were analyzed by real-time quantitative PCR. ELISA was used to measure plasma level of placenta growth factor (PLGF). Results:The results showed that the miR-126 expression was significantly down-regulated in the circulation of CAD patients compared with control subjects (P<0.01). Plasma PLGF level was significantly upregulated in patients with unstable angina pectoris and acute myocardial infarction (AMI) compared with controls (both P<0.01) the miR-126 expression in AMI was significantly associated with PLGF. Conclusion: miR-126 may serve as a novel biomarker for CAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.