The S100A8/S100A9 heterodimer calprotectin (CP) functions in the host response to pathogens through a mechanism termed "nutritional immunity." CP binds Mn 2+ and Zn 2+ with high affinity and starves bacteria of these essential nutrients. Combining biophysical, structural, and microbiological analysis, we identified the molecular basis of Mn 2+ sequestration. The asymmetry of the CP heterodimer creates a single Mn 2+ -binding site from six histidine residues, which distinguishes CP from all other Mn 2+ -binding proteins. Analysis of CP mutants with altered metal-binding properties revealed that, despite both Mn 2+ and Zn 2+ being essential metals, maximal growth inhibition of multiple bacterial pathogens requires Mn 2+ sequestration. These data establish the importance of Mn 2+ sequestration in defense against infection, explain the broad-spectrum antimicrobial activity of CP relative to other S100 proteins, and clarify the impact of metal depletion on the innate immune response to infection.bacterial pathogenesis | Staphylococcus aureus | antibiotic resistance | protein crystal structure | isothermal titration calorimetry B acterial pathogens are a significant threat to global public health. This threat is compounded by the fact that these organisms are rapidly becoming resistant to all relevant antimicrobials. Of particular note is the recent emergence of antibiotic-resistant strains of Staphylococcus aureus as a leading cause of bacterial infection in the United States (1) and arguably the most important threat to the public health of the developed world. Consequently, the identification of therapeutics to treat bacterial pathogens is paramount to our continued ability to limit this infectious threat.One promising area of potential therapeutic development involves targeting bacterial access to essential transition metals. This strategy is based on the fact that all bacterial pathogens require these nutrient metals to colonize their hosts (2-5). In vertebrates, the bacterial need for nutrient transition metals is counteracted by the sequestration of these metals by the host. This limitation of essential nutrients, termed "nutritional immunity," is a potent defense against infection (6). Although a variety of metals is required for microbial growth, studies of nutritional immunity have been primarily restricted to the struggle for iron (Fe) between host and pathogen (7-9).An innate immune factor, calprotectin (CP), is abundant in neutrophils and plays a key role in nutritional immunity. CP can be found at sites of infection in excess of 1 mg/mL and is required for the control of a number of medically relevant bacteria and fungi including S. aureus, Candida albicans, and Aspergillus fumigates (10-14). The antimicrobial activity of CP is due to the chelation of the essential nutrients Zn 2+ (Zn) and Mn 2+ (Mn), which results in bacterial metal starvation and is reversed by the addition of these metals in excess (11, 13). Moreover, CP-deficient mice have increased microbial burdens following systemic challenge, und...
Acinetobacter baumannii is an important nosocomial pathogen that accounts for up to 20 percent of infections in intensive care units worldwide. Furthermore, A. baumannii strains have emerged that are resistant to all available antimicrobials. These facts highlight the dire need for new therapeutic strategies to combat this growing public health threat. Given the critical role for transition metals at the pathogen-host interface, interrogating the role for these metals in A. baumannii physiology and pathogenesis could elucidate novel therapeutic strategies. Toward this end, the role for calprotectin- (CP)-mediated chelation of manganese (Mn) and zinc (Zn) in defense against A. baumannii was investigated. These experiments revealed that CP inhibits A. baumannii growth in vitro through chelation of Mn and Zn. Consistent with these in vitro data, Imaging Mass Spectrometry revealed that CP accompanies neutrophil recruitment to the lung and accumulates at foci of infection in a murine model of A. baumannii pneumonia. CP contributes to host survival and control of bacterial replication in the lung and limits dissemination to secondary sites. Using CP as a probe identified an A. baumannii Zn acquisition system that contributes to Zn uptake, enabling this organism to resist CP-mediated metal chelation, which enhances pathogenesis. Moreover, evidence is provided that Zn uptake across the outer membrane is an energy-dependent process in A. baumannii. Finally, it is shown that Zn limitation reverses carbapenem resistance in multidrug resistant A. baumannii underscoring the clinical relevance of these findings. Taken together, these data establish Zn acquisition systems as viable therapeutic targets to combat multidrug resistant A. baumannii infections.
During infection, vertebrates limit access to manganese and zinc, starving invading pathogens, such as Staphylococcus aureus, of these essential metals in a process termed "nutritional immunity." The manganese and zinc binding protein calprotectin is a key component of the nutrient-withholding response, and mice lacking this protein do not sequester manganese from S. aureus liver abscesses. One potential mechanism utilized by S. aureus to minimize host-imposed manganese and zinc starvation is the expression of the metal transporters MntABC and MntH. We performed transcriptional analyses of both mntA and mntH, which revealed increased expression of both systems in response to calprotectin treatment. MntABC and MntH compete with calprotectin for manganese, which enables S. aureus growth and retention of manganese-dependent superoxide dismutase activity. Loss of MntABC and MntH results in reduced staphylococcal burdens in the livers of wild-type but not calprotectin-deficient mice, suggesting that these systems promote manganese acquisition during infection. During the course of these studies, we observed that metal content and the importance of calprotectin varies between murine organs, and infection leads to profound changes in the anatomical distribution of manganese and zinc. In total, these studies provide insight into the mechanisms utilized by bacteria to evade host-imposed nutrient metal starvation and the critical importance of restricting manganese availability during infection. Staphylococcus aureus is a commensal organism that asymptomatically colonizes nearly one-third of the population (1). However, once S. aureus breaches the epithelial barrier, the bacterium is capable of infecting nearly every organ despite the robust defenses elaborated by the host (2). This adaptability contributes to the significant morbidity and mortality associated with S. aureus infections. The emergence of methicillin-and vancomycin-resistant isolates has compounded the threat of this organism, highlighting the need to identify new therapeutics (3-7). This is of particular importance, as antibiotic resistance is prevalent in both hospital-and community-acquired isolates (4,6,8).Metals are essential for all forms of life due to their critical contributions to protein structure and enzymatic function (9-12). To combat invading pathogens, vertebrates leverage the essentiality of transition metals by restricting their availability, a process termed "nutritional immunity" (10, 13). While the most prominent example of nutritional immunity is the restriction of iron (Fe) by the host, it has recently been discovered that vertebrates also limit manganese (Mn) and zinc (Zn) availability during infection (10,(13)(14)(15)(16)(17). In fact, examination of abscesses formed during S. aureus infection has revealed that these lesions are Mn and Zn depleted (14). It was subsequently determined that the Mnand Zn-binding S100 protein calprotectin (CP) is a critical component of this nutrient-withholding response (10,14,18,19). CPdeficient mice...
Clostridium difficile is the most commonly reported nosocomial pathogen in the United States and is an urgent public health concern worldwide1. Over the past decade, incidence, severity, and costs associated with C. difficile infection (CDI) have increased dramatically2. CDI is most commonly initiated by antibiotic-mediated disruption of the gut microbiota; however, non-antibiotic associated CDI cases are well documented and on the rise3,4. This suggests that unexplored environmental, nutrient, and host factors likely influence CDI. Here we show that excess dietary zinc (Zn) significantly alters the gut microbiota and in turn reduces the threshold of antibiotics needed to confer susceptibility to C. difficile infection. In mice colonized with C. difficile, excess dietary Zn severely exacerbates C. difficile-associated disease by increasing toxin activity and altering the host immune response. In addition, we show that the Zn binding S100 protein calprotectin is antimicrobial against C. difficile and an essential component of the innate immune response to CDI. Together, these data suggest that nutrient Zn levels play a key role in determining susceptibility to CDI and severity of disease, and that calprotectin-mediated metal limitation is an important factor in the host immune response to C. difficile.
Summary Zinc (Zn) is an essential metal that vertebrates sequester from pathogens to protect against infection. Investigating the opportunistic pathogen Acinetobacter baumannii’s response to Zn starvation, we identified a putative Zn metallochaperone, ZigA, which binds Zn, is required for bacterial growth under Zn-limiting conditions, and for disseminated infection in mice. ZigA is encoded adjacent to the histidine (His) utilization (Hut) system. The His ammonia-lyase HutH, binds Zn very tightly only in the presence of high His and makes Zn bioavailable through His catabolism. The released Zn enables A. baumannii to combat host-imposed Zn starvation. These results demonstrate that A. baumannii employs several mechanisms to ensure bioavailability of Zn during infection, with ZigA functioning predominately during Zn starvation, but HutH operating in both Zn deplete and replete conditions to mobilize a labile His-Zn pool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.