We propose a conceptually simple framework for fast COVID-19 screening in 3D chest CT images. The framework can efficiently predict whether or not a CT scan contains pneumonia while simultaneously identifying pneumonia types between COVID-19 and Interstitial Lung Disease (ILD) caused by other viruses. In the proposed method, two 3D-ResNets are coupled together into a single model for the two above-mentioned tasks via a novel prior-attention strategy. We extend residual learning with the proposed prior-attention mechanism and design a new so-called priorattention residual learning (PARL) block. The model can be easily built by stacking the PARL blocks and trained endto-end using multi-task losses. More specifically, one 3D-ResNet branch is trained as a binary classifier using lung images with and without pneumonia so that it can highlight the lesion areas within the lungs. Simultaneously, inside the PARL blocks, prior-attention maps are generated from this branch and used to guide another branch to learn more discriminative representations for the pneumoniatype classification. Experimental results demonstrate that the proposed framework can significantly improve the performance of COVID-19 screening. Compared to other meth-Manuscript
In computed tomography, automated detection of pulmonary nodules with a broad spectrum of appearance is still a challenge, especially, in the detection of small nodules. An automated detection system usually contains two major steps: candidate detection and false positive (FP) reduction. We propose a novel strategy for fast candidate detection from volumetric chest CT scans, which can minimize false negatives (FNs) and false positives (FPs). The core of the strategy is a nodule-size-adaptive deep model that can detect nodules of various types, locations, and sizes from 3D images. After candidate detection, each result is located with a bounding cube, which can provide rough size information of the detected objects. Furthermore, we propose a simple yet effective CNNs-based classifier for FP reduction, which benefits from the candidate detection. The performance of the proposed nodule detection was evaluated on both independent and publicly available datasets. Our detection could reach high sensitivity with few FPs and it was comparable with the state-of-the-art systems and manual screenings. The study demonstrated that excellent candidate detection plays an important role in the nodule detection and can simplify the design of the FP reduction. The proposed candidate detection is an independent module, so it can be incorporated with any other FP reduction methods. Besides, it can be used as a potential solution for other similar clinical applications.INDEX TERMS Computed tomography, pulmonary nodule, object detection, deep-learning, convolutional neural networks.
Introduction:
The loss of nigrosome-1, which is also referred to as the swallow tail sign (STS) in T2
*
-weighted iron-sensitive magnetic resonance imaging (MRI), has recently emerged as a new biomarker for idiopathic Parkinson's disease (IPD). However, consistent recognition of the STS is difficult due to individual variations and different imaging parameters. Radiomics might have the potential to overcome these shortcomings. Therefore, we chose to explore whether radiomic features of nigrosome-1 of substantia nigra (SN) based on quantitative susceptibility mapping (QSM) could help to differentiate IPD patients from healthy controls (HCs).
Methods:
Three-dimensional multi-echo gradient-recalled echo images (0.86 × 0.86 × 1.00 mm
3
) were obtained at 3.0-T MRI for QSM in 87 IPD patients and 77 HCs. Regions of interest (ROIs) of the SN below the red nucleus were manually drawn on both sides, and subsequently, volumes of interest (VOIs) were segmented (these ROIs included four 1-mm slices). Then, 105 radiomic features (including 18 first-order features, 13 shape features, and 74 texture features) of bilateral VOIs in the two groups were extracted. Forty features were selected according to the ensemble feature selection method, which combined analysis of variance, random forest, and recursive feature elimination. The selected features were further utilized to distinguish IPD patients from HC using the SVM classifier with 10 rounds of 3-fold cross-validation. Finally, the representative features were analyzed using an unpaired
t
-test with Bonferroni correction and correlated with the UPDRS-III scores.
Results:
The classification results from SVM were as follows: area under curve (AUC): 0.96 ± 0.02; accuracy: 0.88 ± 0.03; sensitivity: 0.89 ± 0.06; and specificity: 0.87 ± 0.07. Five representative features were selected to show their detailed difference between IPD patients and HCs: 10th percentile and median in IPD patients were higher than those in HCs (all
p
< 0.00125), while Gray Level Run Length Matrix (GLRLM)-Long Run Low Gray Level Emphasis, Gray Level Size Zone Matrix (GLSZM)–Gray Level Non-Uniformity, and volume (all
p
< 0.00125) in IPD patients were lower than those in HCs. The 10th percentile was positively correlated with UPDRS-III score (
r
= 0.35,
p
= 0.001).
Conclusion:
Radiomic features of the nigrosome-1 region of SN based on QSM could be useful in the diagnosis of IPD and could serve as a surrogate marker for the STS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.