The co-infection of porcine reproductive respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) is quite common in clinical settings and no effective treatment to the co-infection is available. In this study, we established the porcine alveolar macrophages (PAM) cells model co-infected with PRRSV/PCV2 with modification in vitro, and investigated the antiviral activity of Matrine on this cell model and further evaluated the effect of Matrine on virus-induced TLR3,4/NF-κB/TNF-α pathway. The results demonstrated PAM cells inoculated with PRRSV followed by PCV2 2 h later enhanced PRRSV and PCV2 replications. Matrine treatment suppressed both PRRSV and PCV2 infection at 12 h post infection. Furthermore, PRRSV/PCV2 co- infection induced IκBα degradation and phosphorylation as well as the translocation of NF-κB from the cytoplasm to the nucleus indicating that PRRSV/PCV2 co-infection induced NF-κB activation. Matrine treatment significantly down-regulated the expression of TLR3, TLR4 and TNF-α although it, to some extent, suppressed p-IκBα expression, suggesting that TLR3,4/NF-κB/TNF-α pathway play an important role of Matrine in combating PRRSV/PCV2 co-infection. It is concluded that Matrine possesses activity against PRRSV/PCV2 co-infection in vitro and suppression of the TLR3,4/NF-κB/TNF-α pathway as an important underlying molecular mechanism. These findings warrant Matrine to be further explored for its antiviral activity in clinical settings.
This experiment was conducted to study the antiviral activities of sodium tanshinone IIA sulfonate (STS) against porcine reproductive and respiratory syndrome virus (PRRSV) and its mechanism. Anti-PRRSV activities of STS were observed on Marc-145 cells by using visualization of cytopathologic effect assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, and its antiviral mechanism was determined by time-of-addition assay, adsorption inhibition assay, and virucidal assay. The results showed that STS could reduce the damage of PRRSV to Marc-145 cells, with the inhibition ratio exceeding to 100%, at the maximum non-cytotoxic concentration. The time-of-addition and virucidal assays indicated that the anti-PRRSV activities of STS could be due to inhibiting the virus replication or/and inactivating the virus directly. The inhibition of the virus attachment was not discovered in adsorption inhibition assay. The results proved that STS had strong anti-PRRSV activity and encouraged for further exploration of STS.
Our previous studies demonstrated that matrine directly acts on the replication process of porcine reproductive and respiratory syndrome virus (PRRSV). Matrine inhibits viral replication and is also associated with the NF-κB signalling pathway. These results suggest that matrine has antiviral and anti-inflammatory effects. However, the specific anti-inflammatory mechanism of matrine is still unclear. In this study, we investigated the anti-IL-1β mechanism of matrine, as IL-1β is a major inflammatory cytokine, in porcine alveolar macrophages (PAMs) stimulated with 4 μg PRRSV 5′-untranslated region (UTR) RNA and 1 μg/mL LPS. After 5′UTR RNA and LPS co-stimulation of PAMs for 12 h, the expression of IL-1β, IL-6, IL-8 and TNF-α was significantly increased. The results also showed that co-stimulation induced the expression of MyD88, and activated the NF-κB signalling pathway and NLRP3 inflammasome. Furthermore, matrine treatment downregulated MyD88, NLRP3 and caspase-1 expression, inhibited ASC speck formation, suppressed IκBα phosphorylation, and interfered with the translocation of NF-κB from the cytoplasm to the nucleus. These results suggest that matrine plays an important role in PAMs co-stimulated with PRRSV 5′UTR RNA and LPS via its effect on NF-κB and the NLRP3 inflammasome. These findings lay the foundation for the exploration of the clinical application of matrine in PRRSV disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.