Motivation Protein–protein interactions (PPIs) play important roles in many biological processes. Conventional biological experiments for identifying PPI sites are costly and time-consuming. Thus, many computational approaches have been proposed to predict PPI sites. Existing computational methods usually use local contextual features to predict PPI sites. Actually, global features of protein sequences are critical for PPI site prediction. Results A new end-to-end deep learning framework, named DeepPPISP, through combining local contextual and global sequence features, is proposed for PPI site prediction. For local contextual features, we use a sliding window to capture features of neighbors of a target amino acid as in previous studies. For global sequence features, a text convolutional neural network is applied to extract features from the whole protein sequence. Then the local contextual and global sequence features are combined to predict PPI sites. By integrating local contextual and global sequence features, DeepPPISP achieves the state-of-the-art performance, which is better than the other competing methods. In order to investigate if global sequence features are helpful in our deep learning model, we remove or change some components in DeepPPISP. Detailed analyses show that global sequence features play important roles in DeepPPISP. Availability and implementation The DeepPPISP web server is available at http://bioinformatics.csu.edu.cn/PPISP/. The source code can be obtained from https://github.com/CSUBioGroup/DeepPPISP. Supplementary information Supplementary data are available at Bioinformatics online.
Supplementary data are available at Bioinformatics online.
Supplementary data are available at Bioinformatics online.
Motivation Computational drug repositioning is a cost-effective strategy to identify novel indications for existing drugs. Drug repositioning is often modeled as a recommendation system problem. Taking advantage of the known drug–disease associations, the objective of the recommendation system is to identify new treatments by filling out the unknown entries in the drug–disease association matrix, which is known as matrix completion. Underpinned by the fact that common molecular pathways contribute to many different diseases, the recommendation system assumes that the underlying latent factors determining drug–disease associations are highly correlated. In other words, the drug–disease matrix to be completed is low-rank. Accordingly, matrix completion algorithms efficiently constructing low-rank drug–disease matrix approximations consistent with known associations can be of immense help in discovering the novel drug–disease associations. Results In this article, we propose to use a bounded nuclear norm regularization (BNNR) method to complete the drug–disease matrix under the low-rank assumption. Instead of strictly fitting the known elements, BNNR is designed to tolerate the noisy drug–drug and disease–disease similarities by incorporating a regularization term to balance the approximation error and the rank properties. Moreover, additional constraints are incorporated into BNNR to ensure that all predicted matrix entry values are within the specific interval. BNNR is carried out on an adjacency matrix of a heterogeneous drug–disease network, which integrates the drug–drug, drug–disease and disease–disease networks. It not only makes full use of available drugs, diseases and their association information, but also is capable of dealing with cold start naturally. Our computational results show that BNNR yields higher drug–disease association prediction accuracy than the current state-of-the-art methods. The most significant gain is in prediction precision measured as the fraction of the positive predictions that are truly positive, which is particularly useful in drug design practice. Cases studies also confirm the accuracy and reliability of BNNR. Availability and implementation The code of BNNR is freely available at https://github.com/BioinformaticsCSU/BNNR. Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.