Due to the complex configuration and control framework, the conventional microgrid is not cost-effective for engineering applications with small or medium capacity. A stand-alone modular microgrid with separated AC bus and decentralized control strategy is proposed in this paper. Each module is a self-powered system, which consists of wind and solar power, a storage battery, load and three-port converter. The modules are interconnected by three-port converters to form the microgrid. Characteristics, operation principle, control of the modular microgrid and the three-port converter are analyzed in detail. Distributed storage batteries enable power exchanges among modules to enhance economic returns. Economic dispatch of the stand-alone modular microgrid is a mixed-integer programming problem. A day-ahead operation optimization model including fuel cost, battery operation cost, and power transmission cost is established. Because there are so many constraints, it is difficult to produce a feasible solution and even more difficult to have an improved solution. An improved simplified swarm optimization (iSSO) method is therefore proposed. The iSSO scheme designs the new update mechanism and survival of the fittest policy. The experimental results from the demonstration project on DongAo Island reflect the effectiveness of the stand-alone modular microgrid and the economic dispatch strategy based on the iSSO method.
Conventional microgrids have a specific system configuration and a complex hierarchical control structure, which has resulted in difficulties in their economic development. A modular microgrid based on distributed battery storage has been proposed to realize the rapid economic development of small-to-medium microgrids. Control of modular microgrids is simplified to voltage control within modules and exchange power control among modules. Battery power has great influence on battery performance. Space-time complementary power characteristics among modules help to alleviate power fluctuations, prolong the service life and realize the unified maintenance of distributed batteries. Leader-following consensus theory of multi-agent systems is adopted to realize the power and capacity consensus tracking of distributed battery storage in a modular microgrid. Sufficient and necessary conditions for continuous-time and sampled-data bounded power and capacity consensus tracking of distributed battery storages are deduced by a matrix analytical method. Steady regions of sampling period and sampling delay for sampled-data bounded power and capacity consensus tracking are determined by analytical or numerical solutions. Simulations and experiments on a modular microgrid demonstration project located on DongAo Island (China) show the effectiveness and robustness of the proposed power and capacity consensus tracking strategy for distributed storage systems. The power and capacity consensus tracking strategy determines the exchange power among modules and improves the control technology of modular microgrids.
The modular microgrid based on distributed battery storages is a simple and reliable power supply way for the islands. Modules are interconnected to the transmission network through the three-port converter. The three-port converter supplies the local ac bus voltage within the module and realizes the power exchange between the module and the transmission network. Distributed battery power and SoC consensus tracking model considering communication time delay is established on the leader-following multi-agent consensus tracking theory. By using the delay decomposition method, where the delay interval is discretized into two segmentations with an equal width, a modified Lyapunov-Krasovskii functional is constructed. A delay-dependent sufficient condition for the absolute stability of the battery power and SoC consensus tracking is derived in terms of linear matrix inequalities (LMIs) by using the free-weighting matrix method. The maximum delay margin corresponding to different controller parameters is calculated with the LMI toolbox of MATLAB. The case study is carried out based on the DongAo Island microgrid demonstration project. Simulations of battery power and SoC consensus tracking with constant time or time-varying delays verifies the effectiveness of the maximum delay margin determined by the stability criteria. Experiments reveal that the three-port converter can meet the requirements of the modular microgrid networking and operation control. The distributed battery power and SoC consensus tracking of the modular microgrid can be achieved when the communication time delay is less than the maximum delay margin. INDEX TERMS Modular microgrid, power and SoC consensus tracking, distributed battery storages, time delay, multi agent system, Lyapunov-Krasovskii functional.
AC/DC hybrid distribution network can realize the high penetration utilization of renewable energy and modular multilevel converter (MMC) is the key equipment to connect AC grid and DC grid. In this paper, the direct modulation based on the virtual resistor and the reference value of dc-bus voltage is adopted, and instantaneous-value model of three-phase half-bridge MMC is derived by introducing differential-mode and common-mode component representation. Then, the decoupling control of AC active power and reactive power is designed based on the linear active disturbance rejection control theory (LADRC). The total disturbances including the coupling term and capacitor voltage fluctuation can be estimated by extended state observer (ESO), and then cancelled exactly. Based on the simplified average-value model of MMC, the small signal stability analysis of three-terminal AC/DC distribution network with 26-level MMCs corresponding to the Tangjiawan-Jishan1-Jishan2 demonstration project is carried out by root locus and bode diagram method, which gives the guidance for the choice of the main circuit component and controller parameters, and shows that the virtual resistor greatly reduces the resonant peak of AC/DC distribution network. Simulation and experiment results verify the effectiveness of the power decoupling control strategy of MMC and the AC/DC distribution network can realize complex multi-directional power flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.