Dance and music are two highly correlated artistic forms. Synthesizing dance motions has attracted much attention recently. Most previous works conduct music-to-dance synthesis via directly music to human skeleton keypoints mapping. Meanwhile, human choreographers design dance motions from music in a two-stage manner: they firstly devise multiple choreographic dance units (CAUs), each with a series of dance motions, and then arrange the CAU sequence according to the rhythm, melody and emotion of the music. Inspired by these, we systematically study such two-stage choreography approach and construct a dataset to incorporate such choreography knowledge. Based on the constructed dataset, we design a two-stage music-to-dance synthesis framework ChoreoNet to imitate human choreography procedure. Our framework firstly devises a CAU prediction model to learn the mapping relationship between music and CAU sequences. Afterwards, we devise a spatial-temporal inpainting model to convert the CAU sequence into continuous dance motions. Experimental results demonstrate that the proposed ChoreoNet outperforms baseline methods (0.622 in terms of CAU BLEU score and 1.59 in terms of user study score).
With the rapid expansion of digital music formats, it's indispensable to recommend users with their favorite music. For music recommendation, users' personality and emotion greatly affect their music preference, respectively in a long-term and short-term manner, while rich social media data provides effective feedback on these information. In this paper, aiming at music recommendation on social media platforms, we propose a Personality and Emotion Integrated Attentive model (PEIA), which fully utilizes social media data to comprehensively model users' long-term taste (personality) and short-term preference (emotion). Specifically, it takes full advantage of personality-oriented user features, emotion-oriented user features and music features of multi-faceted attributes. Hierarchical attention is employed to distinguish the important factors when incorporating the latent representations of users' personality and emotion. Extensive experiments on a large real-world dataset of 171,254 users demonstrate the effectiveness of our PEIA model which achieves an NDCG of 0.5369, outperforming the state-of-the-art methods. We also perform detailed parameter analysis and feature contribution analysis, which further verify our scheme and demonstrate the significance of co-modeling of user personality and emotion in music recommendation.
In intelligent speech interaction, automatic speech emotion recognition (SER) plays an important role in understanding user intention. While sentimental speech has different speaker characteristics but similar acoustic attributes, one vital challenge in SER is how to learn robust and discriminative representations for emotion inferring. In this paper, inspired by human emotion perception, we propose a novel representation learning component (RLC) for SER system, which is constructed with Multi-head Self-attention and Global Context-aware Attention Long Short-Term Memory Recurrent Neutral Network (GCA-LSTM). With the ability of Multi-head Self-attention mechanism in modeling the element-wise correlative dependencies, RLC can exploit the common patterns of sentimental speech features to enhance emotion-salient information importing in representation learning. By employing GCA-LSTM, RLC can selectively focus on emotion-salient factors with the consideration of entire utterance context, and gradually produce discriminative representation for emotion inferring. Experiments on public emotional benchmark database IEMOCAP and a tremendous realistic interaction database demonstrate the outperformance of the proposed SER framework, with 6.6% to 26.7% relative improvement on unweighted accuracy compared to state-of-the-art techniques.
No abstract
Online Social Networks (OSNs) evolve through two pervasive behaviors: follow and unfollow, which respectively signify relationship creation and relationship dissolution. Researches on social network evolution mainly focus on the follow behavior, while the unfollow behavior has largely been ignored. Mining unfollow behavior is challenging because user's decision on unfollow is not only affected by the simple combination of user's attributes like informativeness and reciprocity, but also affected by the complex interaction among them. Meanwhile, prior datasets seldom contain sufficient records for inferring such complex interaction. To address these issues, we first construct a large-scale real-world Weibo1 dataset, which records detailed post content and relationship dynamics of 1.8 million Chinese users. Next, we define user's attributes as two categories: spatial attributes (e.g., social role of user) and temporal attributes (e.g., post content of user). Leveraging the constructed dataset, we systematically study how the interaction effects between user's spatial and temporal attributes contribute to the unfollow behavior. Afterwards, we propose a novel unified model with heterogeneous information (UMHI) for unfollow prediction. Specifically, our UMHI model: 1) captures user's spatial attributes through social network structure; 2) infers user's temporal attributes through user-posted content and unfollow history; and 3) models the interaction between spatial and temporal attributes by the nonlinear MLP layers. Comprehensive evaluations on the constructed dataset demonstrate that the proposed UMHI model outperforms baseline methods by 16.44 on average in terms of precision. In addition, factor analyses verify that both spatial attributes and temporal attributes are essential for mining unfollow behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.