The mechanisms through which tumor cells genetically lose antigenicity and evade immune checkpoints remain largely elusive. Here, we report that tissue-specific expression of the human long-noncoding RNA LINK-A in mouse mammary glands initiated metastatic mammary gland tumors, which phenotypically resembled human triple-negative breast cancer (TNBC). LINK-A expression facilitated crosstalk between phosphatidylinositol-(3,4,5)-trisphosphate and inhibitory G-protein–coupled receptor (GPCR) pathways, attenuating protein kinase A (PKA)-mediated phosphorylation of the E3 ubiquitin ligase TRIM71. Consequently, LINK-A expression enhanced K48–polyubiquitination-mediated degradation of the antigen peptide-loading complex (PLC) and intrinsic tumor suppressors Rb and p53. Treatment with LINK-A-locked nucleic acids or GPCR antagonists stabilized the PLC components, Rb, and p53, and sensitized mammary gland tumors to immune checkpoint blockers (ICBs). Importantly, PD-1 blockade-resistant TNBC patients exhibited elevated LINK-A levels and downregulated PLC components. Hence, we demonstrated lncRNA-dependent downregulation of antigenicity and intrinsic tumor suppression, which may provide the basis for developing a therapeutic regimen of combinational immunotherapy and effective early prevention for TNBCs.
Dystrophin proteomic regulation in Muscular Dystrophies (MD) remains unclear. We report that a long noncoding RNA (lncRNA), H19 , associates with dystrophin and inhibits E3 ligase-dependent poly-ubiquitination at Lys3584 (referred to as Ub-DMD) and its subsequent protein degradation. In-frame deletions in BMD and a DMD non-silent mutation (C3340Y) result in defects in the protein’s ability to interact with H19 , causing elevated Ub-DMD levels and dystrophin degradation. Dmd C3333Y mice exhibited progressive muscular dystrophy, elevated serum CK, heart dilation, blood vessel irregularity, and respiratory failure with concurrently reduced dystrophin and increased Ub-DMD status. H19 RNA oligonucleotides conjugated with Agrin (AGR- H19 ) and Nifenazone competed-with/inhibited TRIM63. Dmd C3333Y animals, iPSC-derived skeletal muscle cells from BMD patients, or mdx mice subjected to exon-skipping exhibited inhibited dystrophin degradation, preserved skeletal/cardiac muscle histology, and improved strength/heart function following AGR- H19 or Nifenazone treatment. Our study paves the way to meaningful targeted therapeutics for BMD and certain DMD patients.
The functional role of long noncoding RNAs (lncRNAs) in inherited metabolic disorders, including phenylketonuria (PKU), is unknown. Here, we demonstrate that the mouse lncRNA Pair and human HULC associate with phenylalanine hydroxylase (PAH). Pair-knockout mice exhibited excessive blood phenylalanine (Phe), musty odor, hypopigmentation, growth retardation, and progressive neurological symptoms including seizures, which faithfully models human PKU. HULC depletion led to reduced PAH enzymatic activities in human induced pluripotent stem cell–differentiated hepatocytes. Mechanistically, HULC modulated the enzymatic activities of PAH by facilitating PAH-substrate and PAH-cofactor interactions. To develop a therapeutic strategy for restoring liver lncRNAs, we designed GalNAc-tagged lncRNA mimics that exhibit liver enrichment. Treatment with GalNAc-HULC mimics reduced excessive Phe in Pair−/− and PahR408W/R408W mice and improved the Phe tolerance of these mice.
One of the major obstacles to treating pancreatic ductal adenocarcinoma (PDAC) is its immunoresistant microenvironment. The functional importance and molecular mechanisms of Schwann cells in PDAC remains largely elusive. We characterized the gene signature of tumor-associated nonmyelinating Schwann cells (TASc) in PDAC and indicated that the abundance of TASc was correlated with immune suppressive tumor microenvironment and the unfavorable outcome of patients with PDAC. Depletion of pancreatic-specific TASc promoted the tumorigenesis of PDAC tumors. TASc-expressed long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 ( PVT1 ) was triggered by the tumor cell–produced interleukin-6. Mechanistically, PVT1 modulated RAF proto-oncogene serine/threonine protein kinase–mediated phosphorylation of tryptophan 2,3-dioxygenase in TASc, facilitating its enzymatic activities in catalysis of tryptophan to kynurenine. Depletion of TASc-expressed PVT1 suppressed PDAC tumor growth. Furthermore, depletion of TASc using a small-molecule inhibitor effectively sensitized PDAC to immunotherapy, signifying the important roles of TASc in PDAC immune resistance.
BACKGROUND: Hypertension is a common cardiovascular disease that is related to genetic and environmental factors, but its mechanisms remain unclear. DNA methylation, a classic epigenetic modification, not only regulates gene expression but is also susceptible to environmental factors, linking environmental factors to genetic modification. Therefore, globally screening differential genomic DNA methylation in patients with hypertension is important for investigating hypertension mechanisms. METHODS: Differential genomic DNA methylation in patients with hypertension, individuals with prehypertension, and healthy control individuals was screened using Illumina 450K BeadChip and verified by pyrosequencing. Plasma OVGP1 (oviduct glycoprotein 1) levels were determined using an enzyme-linked immunosorbent assay. Ovgp1 transgenic and knockout mice were generated to analyze the function of OVGP1. The blood pressure levels of the mouse models were measured using the tail-cuff system and radiotelemetry methods. The role of OVGP1 in vascular remodeling was determined by vascular relaxation studies. Protein–protein interactions were investigated using a pull-down/mass spectrometry assay and verified with coimmunoprecipitation and pull-down assays. RESULTS: We found a hypomethylated site at cg20823859 in the promoter region of OVGP1 and plasma OVGP1 levels were significantly increased in patients with hypertension. This finding indicates that OVGP1 is associated with hypertension. In Ovgp1 transgenic mice, OVGP1 overexpression caused an increase in blood pressure, dysfunctional vasoconstriction and vasodilation, remodeling of arterial walls, and increased vascular superoxide stress and inflammation, and these phenomena were exacerbated by angiotensin II infusion. In contrast, OVGP1 deficiency attenuated angiotensin II–induced vascular oxidase stress, inflammation, and collagen deposition. These findings indicate that OVGP1 is a prohypertensive factor that directly promotes vascular remodeling. Pull-down and coimmunoprecipitation assays showed that nonmuscle MYH9 (myosin heavy chain IIA) interacted with OVGP1, whereas inhibition of MYH9 attenuated OVGP1-induced hypertension and vascular remodeling. CONCLUSIONS: Hypomethylation at cg20823859 in the promoter region of OVGP1 is associated with hypertension and induces upregulation of OVGP1. The interaction between OVGP1 and MYH9 contributes to vascular remodeling and dysfunction. Therefore, OVGP1 is a prohypertensive factor that promotes vascular remodeling by binding with MYH9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.