[reaction: see text] beta-Ketonitriles are important precursors for a wide variety of biologically active heterocycles. A facile procedure for the high-yielding acylation of nitrile anions with unactivated esters to provide beta-ketonitriles is reported. The procedure is successful with enolizable and nonenolizable esters as well as hindered nitrile anions.
An exothermic decomposition was observed during a metalation/acylation of 3,4-difluoroanisole (5), resulting in a significant thermal hazard. The lithiated anion 6 was found to decompose exothermically at temperatures above −47 °C showing an adiabatic temperature rise at a peak rate of 120 °C/min. A literature search revealed similar observations for metalation/acylation in analogous aromatic difluoro compounds. This sequence of reactions was evaluated thermochemically. Control experiments at −55 °C over 2 h indicated anion 6 was stable at temperatures below −55 °C under dilute reaction concentrations. This runaway hazard could be addressed using MgCl2 to stabilize the reactive species and thereby decrease its decomposition rate. Thermochemical experiments suggested MgCl2 forms a weak interaction with lithiated species 6, rather than via complete lithium−magnesium exchange. The process was successfully piloted on a multikilo scale by use of MgCl2 as an additive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.