Automatic extraction of buildings from remote sensing imagery plays a significant role in many applications, such as urban planning and monitoring changes to land cover. Various building segmentation methods have been proposed for visible remote sensing images, especially state-of-the-art methods based on convolutional neural networks (CNNs). However, high-accuracy building segmentation from high-resolution remote sensing imagery is still a challenging task due to the potentially complex texture of buildings in general and image background. Repeated pooling and striding operations used in CNNs reduce feature resolution causing a loss of detailed information. To address this issue, we propose a light-weight deep learning model integrating spatial pyramid pooling with an encoder-decoder structure. The proposed model takes advantage of a spatial pyramid pooling module to capture and aggregate multi-scale contextual information and of the ability of encoder-decoder networks to restore losses of information. The proposed model is evaluated on two publicly available datasets; the Massachusetts roads and buildings dataset and the INRIA Aerial Image Labeling Dataset. The experimental results on these datasets show qualitative and quantitative improvement against established image segmentation models, including SegNet, FCN, U-Net, Tiramisu, and FRRN. For instance, compared to the standard U-Net, the overall accuracy gain is 1.0% (0.913 vs. 0.904) and 3.6% (0.909 vs. 0.877) with a maximal increase of 3.6% in model-training time on these two datasets. These results demonstrate that the proposed model has the potential to deliver automatic building segmentation from high-resolution remote sensing images at an accuracy that makes it a useful tool for practical application scenarios.INDEX TERMS Deep learning, high-resolution remote sensing imagery, building extraction, fully convolutional networks, encoder-decoder.
Automatic building extraction based on high-resolution aerial images has important applications in urban planning and environmental management. In recent years advances and performance improvements have been achieved in building extraction through the use of deep learning methods. However, the design of existing models focuses attention to improve accuracy through an overflowing number of parameters and complex structure design, resulting in large computational costs during the learning phase and low inference speed. To address these issues, we propose a new, efficient end-to-end model, called ARC-Net. The model includes residual blocks with asymmetric convolution (RBAC) to reduce the computational cost and to shrink the model size. In addition, dilated convolutions and multi-scale pyramid pooling modules are utilized to enlarge the receptive field and to enhance accuracy. We verify the performance and efficiency of the proposed ARC-Net on the INRIA Aerial Image Labeling dataset and WHU building dataset. Compared to available deep learning models, the proposed ARC-Net demonstrates better segmentation performance with less computational costs. This indicates that the proposed ARC-Net is both effective and efficient in automatic building extraction from high-resolution aerial images.
Seismic vulnerability assessments play a significant role in comprehensive risk mitigation efforts and seismic emergency planning, especially for urban areas with a high population density and a complex construction environment. Traditional approaches such as in situ fieldwork are accurate for conducting seismic vulnerability assessments of buildings; however, they are too much time and cost-consuming, especially in moderate to low seismic hazard regions. To address this issue, an integrated approach for a macroseismic vulnerability assessment composed of data mining methods and GIScience technology was presented and applied to Urumqi, China. First, vulnerability proxies were established via in situ data of buildings in the Tianshan District with an EMS-98 vulnerability classification scheme and two data mining methods, namely, support vector machine and association rule learning methods. Then, vulnerability proxies were applied to the Urumqi database, and the accuracy was validated. Finally, seismic risk maps were constructed through data consisting of direct damage to buildings and human casualties. The results indicated that the two data mining methods could achieve desirable accuracies and stabilities when estimating the seismic vulnerability. The seismic risk of Urumqi was estimated as Slight with a predicted number of 61,380 homeless people for a seismic intensity scenario of VIII.
As the convenient outlet to the Bo Sea and the major region of economic development in the Yellow River Basin, Shandong Province in China has undergone large changes in land use/land cover (LULC) in the past two decades with rapid urbanization and population growth. The analysis of the LULC change patterns and its driving factors in the Shandong section of the Yellow River Basin can provide a scientific basis for rational planning and ecological protection of land resources in the Shandong section of the Yellow River Basin. In this manuscript, we analyzed the spatial pattern of LULC and its spatial and temporal changes in the Shandong section of the Yellow River Basin in 2000, 2010, and 2020 by using the random forest classification algorithm with the Google Earth Engine platform and multi-temporal Landsat TM/OLI data. The driving factors of LULC changes were also quantified by the factor detector and interaction detector in the geodetector. Results show that in the past two decades, the LULC types in the study area are mainly farmland and construction land, among which the proportion of farmland area has decreased and the proportion of construction land area has increased from 19.4% to 29.7%. Based on the results of factor detector, it can be concluded that elevation, slope, and soil type are the key factors affecting LULC change in the study area. The interaction between elevation and slope, slope and soil type, and temperature and precipitation has strong explanatory power for the spatial variation of LULC change in the study area. The research results can provide data support for ecological environmental protection, sustainable, and high-quality development of the Shandong section of the Yellow River Basin, and help local governments take corresponding measures to achieve coordinated and sustainable socioeconomic and environmental development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.