Genetics is considered as an important risk factor in the pathological changes of Parkinson's disease (PD). Substantia nigra (SN) is thought to be the most vulnerable area in this process. In recent decades, however, few related long non-coding RNAs (lncRNAs) in the SN of PD patients had been identified and the functions of those lncRNAs had been studied even less. In this study, we sought to investigate the lncRNA expression profiles and their potential functions in the SN of PD patients. We screened lncRNA expression profiles in the SN of PD patients using the lncRNA mining approach from the ArrayExpress database, which included GSE20295. The samples were from 11 of PD and 14 of normal tissue samples. We identified 87 lncRNAs that were altered significantly in the SN during the occurrence of PD. Among these lncRNAs, lncRNA AL049437 and lncRNA AK021630 varied most dramatically. AL049437 was up-regulated in the PD samples, while AK021630 was down-regulated. Based on the results, we focused on the potential roles of the two lncRNAs in the pathogenesis of PD by the knockdown of the expression of AL049437 or AK021630 in human neuroblastoma SH-SY5Y cell line. Results indicated that the reduction in AL049437 level increased cell viability, mitochondrial transmembrane potential (Δψm), mitochondrial mass, and tyrosine hydroxylase (TyrH) secretion. By contrast, the knockdown of AK021630 resulted in the opposite effect. Based on these results, we speculated that lncRNA AL049437 likely contributed to the risk of PD, while lncRNA AK021630 likely inhibited the occurrence of PD.
Hypoxia-inducible factor-1α (HIF-1α), a well-identified hypoxia-related protein, is involved in regulating the biological functions of various cell types including neurons. The traditional biological function of HIF-1α is promoting the transcription of some pro-survival genes when exposing to low oxygen conditions. Meanwhile, some studies also point out that HIF-1α shows the detrimental role in several central nervous system (CNS) disorders. Up to now, the knowledge of HIF-1α function in CNS is still limited. To investigate whether HIF-1α is involved in CNS impairment and repair, we employed a traumatic brain injury model in adult rats. Upregulation of HIF-1α was observed in the injured brain cortex by western blot analysis and immunohistochemistry staining. Terminal deoxynucleotidyl transferase deoxy-UTP nick-end labeling (TUNEL) and 4',6-diamidino-2-phenylindole (DAPI) staining suggested that HIF-1α was relevant to neuronal apoptosis after brain injury. In addition, glutamate excitotoxic model of primary cortex neurons was introduced to further investigate the role of HIF-1α in neuronal apoptosis; the result implied HIF-1α was associated with the regulation of p53 and BNIP3 in the apoptotic neurons. Based on our data, we suggested that HIF-1α might play an important role in neuronal apoptosis after traumatic brain injury in rat, which might also provide a basis for the further study on its role in regulating the transcription of target genes in apoptotic neurons, and might gain a novel strategy for the clinical therapy for traumatic brain injury.
Ischemic stroke and the following reperfusion, an acute therapeutic intervention, can cause irreversible brain damages. However, the underlying pathological mechanisms are still under investigation. To obtain a comprehensive, real-time view of the cell-autonomous mechanisms involved in ischemic stroke and reperfusion, we applied the next-generation sequencing (NGS) technology to characterize the temporal changes in gene expression profiles using primarily cultured hippocampal neurons under an oxygen-glucose deprivation/reperfusion (OGD/R) condition. We first identified the differentially expressed genes (DEGs) between normal cultured neurons, neurons with OGD, and neurons with OGD followed by reperfusion for 6 h, 12 h, and 18 h, respectively. We then performed bioinformatics analyses, including gene ontological (GO) and pathway analysis and co-expression network analysis to screen for novel key pathways and genes involved in the pathology of OGD/R. After we confirmed the changes of selected key genes in hippocampal cultures with OGD/R, we further validated their expression changes in an in vivo ischemic stroke model (MCAO). Finally, we demonstrated that prevention of the up-regulation of a key gene (Itga5) associated with OGD/R promoted hippocampal neuronal survival. Our research thereby provided novel insights into the molecular mechanisms in ischemic stroke pathophysiology and potential targets for therapeutic intervention after ischemic stroke.
Higher HRV in the first day after coil embolization was associated with unfavorable outcomes in patients with SAH. Early detection and appropriate treatment of the overactive sympathetic activity might promote functional recovery after SAH. Abbreviation: BP: Blood pressure; CI: Confidence interval; DBP: Diastolic blood pressure; GCS: Glasgow coma scale; GOS: Glasgow outcome scale; HR: Heart rate; HRV: Heart rate variability; OR: Odds ratio; ROC: Receiver operating characteristics; SD: Standard deviation; SAH: Subarachnoid hemorrhage; SV: Successive variation; SBP: Systolic blood pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.