Discovering important genes that account for the phenotype of interest has long been a challenge in genome-wide expression analysis. Analyses such as gene set enrichment analysis (GSEA) that incorporate pathway information have become widespread in hypothesis testing, but pathway-based approaches have been largely absent from regression methods due to the challenges of dealing with overlapping pathways and the resulting lack of available software. The R package grpreg is widely used to fit group lasso and other group-penalized regression models; in this study, we develop an extension, grpregOverlap, to allow for overlapping group structure using a latent variable approach. We compare this approach to the ordinary lasso and to GSEA using both simulated and real data. We find that incorporation of prior pathway information can substantially improve the accuracy of gene expression classifiers, and we shed light on several ways in which hypothesis-testing approaches such as GSEA differ from regression approaches with respect to the analysis of pathway data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.