We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO4 laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearities for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.
The optimal physical conditions of single-longitudinal-mode (SLM) operation for continuous-wave all-solid-state lasers with high output powers are investigated theoretically and experimentally. The dependence of the operation conditions on the linear and nonlinear intracavity losses of the laser is numerically calculated. The theoretical analysis is demonstrated by the experimental measurements on a home-made Nd:YVO4 laser. The stable SLM output up to 33.7 W with optical-optical conversion efficiency of 44.9% at 1064 nm wavelength is recorded for over 7 h. The experimental results are in good agreement with the theoretical expectation.
A balanced homodyne detector, with a maximum common mode rejection ratio and clearance of 75.2 dB and 37 dB, is experimentally obtained with two arbitrary photodiodes of the same model. On the basis of self-subtraction photodetector scheme, we divide the influence of photodiodes on the common mode rejection ratio into two parts, including magnitude and phase of output signal. The discrepancy of quantum efficiency and dark current affects magnitude of output signal of photodiodes, which is compensated by adjusting the splitter ratio. The difference of the equivalent capacitance and resistance affects the phase of output signal of photodiodes, which is compensated by the differential fine tuning circuit and adjustable bias voltage circuit. With these designs, the developed homodyne detector can be used for measuring accurately the squeezed state.
We present a mutual compensation scheme of three phase fluctuations, originating from the residual amplitude modulation (RAM) in the phase modulation process, in the bright squeezed light generation system. The influence of the RAM on each locking loop is harmonized by using one electro-optic modulator (EOM), and the direction of the phase fluctuation is manipulated by positioning the photodetector (PD) that extracts the error signal before or after the optical parametric amplifier (OPA). Therefore a bright squeezed light with non-classical noise reduction of π is obtained. By fitting the squeezing and antisqueezing measurement results, we confirm that the total phase fluctuation of the system is around 3.1 mrad. The fluctuation of the noise suppression is 0.2 dB for 3 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.