Angiopoietins (Ang-1, Ang-2, and Ang-3) are the ligands of Tie-2 receptor tyrosine kinase. The essential roles of Ang-1 and Tie-2 in embryonic angiogenesis have been established, and studies have demonstrated the involvement of Ang-1 and Ang-2 in tumor angiogenesis. However, the role of Ang-3 in tumor angiogenesis and metastasis and the mechanism underlying its function are totally unknown. We have shown recently that Ang-3 is tethered on cell surface via heparan sulfate proteoglycans. In our current study, we have demonstrated that overexpression of Ang-3 inhibits pulmonary metastasis of Lewis lung carcinoma and TA3 mammary carcinoma (TA3) cells by inhibiting tumor angiogenesis and promoting apoptosis of the tumor cells. In addition, we have demonstrated that the binding of Ang-3 to the cell surface is required for the effective inhibition of Ang-3 on tumor metastasis and that Ang-3 inhibits endothelial cell proliferation and survival and blocks Ang-1-and vascular endothelial growth factorinduced activation of extracellular signal-regulated kinase 1/2 and Akt kinases, which likely underlie the Ang-3-mediated inhibition on tumor angiogenesis and metastasis.
A B S T R A C TBackground: A physiological hallmark of patients with type 2 diabetes mellitus (T2DM) is b cell dysfunction.Despite adequate treatment, it is an irreversible process that follows disease progression. Therefore, the development of novel therapies that restore b cell function is of utmost importance.Methods: This study aims to unveil the mechanistic action of mesenchymal stem cells (MSCs) by investigating its impact on isolated human T2DM islets ex vivo and in vivo.Findings: We propose that MSCs can attenuate b cell dysfunction by reversing b cell dedifferentiation in an IL-1Ra-mediated manner. In response to the elevated expression of proinflammatory cytokines in human T2DM islet cells, we observed that MSCs was activated to secret IL-1R antagonist (IL-1Ra) which acted on the inflammed islets and reversed b cell dedifferentiation, suggesting a crosstalk between MSCs and human T2DM islets. The co-transplantation of MSCs with human T2DM islets in diabetic SCID mice and intravenous infusion of MSCs in db/db mice revealed the reversal of b cell dedifferentiation and improved glycaemic control in the latter. Interpretation: This evidence highlights the potential of MSCs in future cell-based therapies regarding the amelioration of b cell dysfunction.
RNA abasic sites and the mechanisms involved in their regulation are mostly unknown; in contrast, DNA abasic sites are well-studied. We found surprisingly that, in yeast and human cells, RNA abasic sites are prevalent. When a base is lost from RNA, the remaining ribose is found as a closed-ring or an open-ring sugar with a reactive C1′ aldehyde group. Using primary amine-based reagents that react with the aldehyde group, we uncovered evidence for abasic sites in nascent RNA, messenger RNA, and ribosomal RNA from yeast and human cells. Mass spectroscopic analysis confirmed the presence of RNA abasic sites. The RNA abasic sites were found to be coupled to R-loops. We show that human methylpurine DNA glycosylase cleaves N-glycosidic bonds on RNA and that human apurinic/apyrimidinic endonuclease 1 incises RNA abasic sites in RNA–DNA hybrids. Our results reveal that, in yeast and human cells, there are RNA abasic sites, and we identify a glycosylase that generates these sites and an AP endonuclease that processes them.
The cyclooxygenase2 (COX-2) enzyme catalyzes the first step of prostanoid biosynthesis, and is known for its crucial role in the pathogenesis of several inflammatory diseases including type 2 diabetes mellitus (T2DM). Although a variety of studies revealed that COX-2 played a role in the IL-1β induced β cell dysfunction, the molecular mechanism remains unclear. Here, using a cDNA microarray and in silico analysis, we demonstrated that inflammatory responses were upregulated in human T2DM islets compared with non-diabetic (ND) islets. COX-2 expression was significantly enhanced in human T2DM islets, correlated with the high inflammation level. PGE2, the catalytic product of COX-2, downregulated the functional gene expression of PDX1, NKX6.1, and MAFA and blunted the glucose induced insulin secretion of human islets. Conversely, inhibition of COX-2 activity by a pharmaceutical inhibitor prevented the β-cell dysfunction induced by IL-1β. COX-2 inhibitor also abrogated the IL-1β autostimulation in β cells, which further resulted in reduced COX-2 expression in β cells. Together, our results revealed that COX-2/PGE2 signaling was involved in the regulation of IL-1β autostimulation, thus forming an IL-1β/COX-2/PGE2 pathway loop, which may result in the high inflammation level in human T2DM islets and the inflammatory impairment of β cells. Breaking this IL-1β/COX-2/PGE2 pathway loop provides a potential therapeutic strategy to improve β cell function in the treatment of T2DM patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.