Utilizing laser plasma wakefield to accelerate ultra-high charge electron beam is critical for many pioneering applications, for example to efficiently produce nuclear isomers with short lifetimes which may be widely used. However, because of the beam loading effect, electron charge in a single plasma bubble is limited in level of hundreds picocoulomb. Here, we experimentally present that a hundred kilo-ampere, twenty nanocoulomb, tens of MeV collimated electron beam is produced from a chain of wakefield acceleration, via a tightly focused intense laser pulse transversely matched in dense plasma. This ultra-intense electron beam ascribes to a novel efficient injection that the nitrogen atom inner shell electrons are ionized and continuously injected into multiple plasma bubbles. This intense electron beam has been utilized to exciting nuclear isomers with an ultra-high peak efficiency of 1.76 × 10 15 particles/s via photonuclear reactions. This efficient production method of isomers can be widely used for pumping isotopes with excited state lifetimes down to picosecond, which is benefit for deep understanding nuclear transition mechanisms and stimulating gamma-ray lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.