Compared with the traditional activated sludge process, a membrane bioreactor (MBR) has many advantages, such as good effluent quality, small floor space, low residual sludge yield and easy automatic control. It has a promising prospect in wastewater treatment and reuse. However, membrane fouling is the biggest obstacle to the wide application of MBR. This paper aims at summarizing the new research progress of membrane fouling mechanism, control, prediction and detection in the MBR systems. Classification, mechanism, influencing factors and control of membrane fouling, membrane life prediction and online monitoring of membrane fouling are discussed. The research trends of relevant research areas in MBR membrane fouling are prospected.
Compared to the traditional activated sludge process, the membrane bioreactor (MBR) has several advantages such as the production of high-quality effluent, generation of low excess sludge, smaller footprint requirements, and ease of automatic control of processes. The MBR has a broader prospect of its applications in wastewater treatment and reuse. However, membrane fouling is the biggest obstacle for its wider application. This paper reviews the techniques available to predict fouling in MBR, discusses the problems associated with predicting fouling status using artificial neural networks and mathematical models, summarizes the current state of fouling prediction techniques, and looks into the trends in their development.
In view of the difficulty in obtaining the membrane bioreactor (MBR) membrane flux in real time, considering the disadvantage of the back propagation (BP) network in predicting MBR membrane flux, such as the local minimum value and poor generalization ability of the model, this article introduces tent chaotic mapping in the standard sparrow search algorithm (SSA), which improves the uniformity of population distribution and the searching ability of the algorithm (used to optimize the key parameters of the BP network). The tent sparrow search algorithm back propagation network (Tent-SSA-BP) membrane fouling prediction model is established to achieve accurate prediction of membrane flux; compared to the BP, genetic algorithm back propagation network (GA-BP), particle swarm optimization back propagation network (PSO-BP), sparrow search algorithm extreme learning machine(SSA-ELM), sparrow search algorithm back propagation network (SSA-BP), and Tent particle swarm optimization back propagation network (Tent–PSO-BP) models, it has unique advantages. Compared with the BP model before improvement, the improved soft sensing model reduces MAPE by 96.76%, RMSE by 99.78% and MAE by 95.61%. The prediction accuracy of the algorithm proposed in this article reaches 97.4%, which is much higher than the 48.52% of BP. It is also higher than other prediction models, and the prediction accuracy has been greatly improved, which has some engineering reference value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.