Within a conventional aircraft design process, the horizontal tail and vertical tail are generally sized via volume coefficient methods. In this manuscript, an improved method for conceptual aircraft tail design based on multidisciplinary design optimization (MDO) approach with stability and control constraints has been developed. To develop this method, first, the tail design requirements have been derived from the regulations and the fundamental functionalities of tail plans. Then, the empennage design is formulated as an MDO problem. Eventually the design optimization of horizontal and vertical tail is combined with the design optimization of the aircraft wing. A test case is presented for concurrent wing and tail plane design, which resulted in more than 9% reduction in aircraft block fuel weight and more than 3% reduction in aircraft maximal takeoff weight, which indicates a great potential for fuel burn and carbon reductions with empennage design optimization at conceptual aircraft design phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.