Background Arginine vasopressin dependent antidiuresis plays a key role in water‐sodium retention in heart failure. In recent years, the role of glucocorticoids in the control of body fluid homeostasis has been extensively investigated. Glucocorticoid deficiency can activate V2R (vasopressin receptor 2), increase aquaporins expression, and result in hyponatremia, all of which can be reversed by glucocorticoid supplement. Methods and Results Heart failure was induced by coronary artery ligation for 8 weeks. A total of 32 rats were randomly assigned to 4 groups (n=8/group): sham surgery group, congestive heart failure group, dexamethasone group, and dexamethasone in combination with glucocorticoid receptor antagonist RU486 group. An acute water loading test was administered 6 hours after drug administration. Left ventricular function was measured by a pressure‐volume catheter. Protein expressions were determined by immunohistochemistry and immunoblotting. The pressure‐volume loop analysis showed that dexamethasone improves cardiac function in rats with heart failure. Western blotting confirmed that dexamethasone remarkably reduces the expressions of V2R, aquaporin 2, and aquaporin 3 in the renal‐collecting ducts. As a result of V2R downregulation, the expressions of glucocorticoid regulated kinase 1, apical epithelial sodium channels, and the furosemide‐sensitive Na‐K‐2Cl cotransporter were also downregulated. These favorable effects induced by dexamethasone were mostly abolished by the glucocorticoid receptor inhibitor RU486, indicating that the aforementioned effects are glucocorticoid receptor mediated. Conclusions Glucocorticoids can reverse diluted hyponatremia via inhibiting the vasopressin receptor pathway in rats with heart failure.
Glucocorticoid receptors are essential for normal development and stress responses. Their role in H 2 O and Na + metabolism, especially in chronic heart failure (CHF), is not well defined. In a previous study, we found that glucocorticoids potentiate urination in CHF and promote H 2 O excretion by inhibiting the vasopressin receptor 2 pathway. The present study examines the effect of glucocorticoids on renal Na + excretion and the underlying mechanisms in CHF rats with acute sodium loading. CHF was induced by left coronary artery ligation for 8 weeks. Rats were randomly assigned to 5 groups: control, CHF, dexamethasone (DEX)-administered CHF, DEX-administered CHF treated with RU486 (mifepristone, a glucocorticoid receptor antagonist), and RU486-treated CHF. An acute sodium loading test was performed 6 hours after DEX administration. Blood and urine samples were collected, and hemodynamics were measured. The expression and localization of Na + transporter proteins were determined by immunoblotting and immunohistochemistry. DEX increased the urine volume and urinary sodium and improved cardiac function and the estimated glomerular filtration rate in CHF rats. The upregulation of the epithelial sodium channel b and g subunits, Na-K-2Cl cotransporter, serum glucocorticoid-regulated kinase 1 (SGK1), and Na + /K + -ATPase in the renal epithelium of CHF rats was downregulated by DEX. These beneficial effects were abolished by RU486. The expression of natriuretic peptide receptor A was opposite that of the above proteins. Glucocorticoids might induce profound natriuresis in CHF rats during acute sodium loading, which is associated with downregulating some Na + transporter proteins in the renal epithelium and improving intrarenal hemodynamics.
To construct an animal model of atrial fibrillation and observe the effect of acute atrial fibrillation on renal water and sodium metabolism in mice. A total of 20 C57 mice were randomly assigned to 2 groups (n = 10/group): control group (CON) and atrial fibrillation group (AF). The mice model of atrial fibrillation was induced by chlorhexidine gluconate (CG) in combination with transesophageal atrial spacing. The urine of the two groups of mice was collected, and then we calculate the urine volume and urine sodium content. The expression of TGF-β and type III collagen in the atrial myocardium of the two groups was detected by immunohistochemistry and Western Blot. The levels of CRP and IL-6 in blood were observed by ELISA, and the NF-κB, TGF-β, collagen type III, AQP2, AQP3, AQP4, ENaC-β, ENaC-γ, SGK1 and NKCC proteins in the kidneys of the two groups of mice was observed by Western Blot. Compared with CON, the expression of TGF-β and type III collagen in the atrial myocardium of the mice in AF were increased, the levels of CRP and IL-6 in the blood in AF were increased, and the renal NF-κB, TGF-β, type III collagen AQP2, AQP3, ENaC-β, ENaC-γ, SGK1 and NKCC protein expression in AF were up-regulated. The level of urine volume and urine sodium content in AF were significantly reduced. In the acute attack of atrial fibrillation, the formation of renal inflammatory response and fibrosis is activated, and the renal water and sodium metabolism is hindered, which is related to the up-regulated of the expressions of renal NKCC, ENaC and AQPs.
Natriuretic peptides, which are produced by the heart, bind to natriuretic peptide receptor A (NPR1 encoded by natriuretic peptide receptor 1 gene) and cause vasodilation and natriuresis. Thus, they serve an important role in regulating blood pressure. In the present study, microinjection of CRISPR associated protein 9/single guide RNA into fertilized C57BL/6N mouse eggs was performed to generate filial generation zero (F0) Npr1 knockout homozygous mice (Npr1 -/- ). F0 mice mated with wild-type (WT) mice to obtain F1 Npr1 knockout heterozygous mice with stable heredity (Npr1 +/- ). F1 self-hybridization was used to expand the population of heterozygous mice (Npr1 +/- ). The present study performed echocardiography to investigate the impact of NPR1 gene knockdown on cardiac function. Compared with those in the WT group (C57BL/6N male mice), the left ventricular ejection fraction, myocardial contractility and renal sodium and potassium excretion and creatinine-clearance rates were decreased, indicating that Npr1 knockdown induced cardiac and renal dysfunction. In addition, expression of serum glucocorticoid-regulated kinase 1 (SGK1) increased significantly compared with that in WT mice. However, glucocorticoids (dexamethasone) upregulated NPR1 and inhibited SGK1 and alleviated cardiac and renal dysfunction caused by Npr1 gene heterozygosity. SGK1 inhibitor GSK650394 ameliorate cardiorenal syndrome by suppressing SGK1. Briefly, glucocorticoids inhibited SGK1 by upregulating NPR1, thereby ameliorating cardiorenal impairment caused by Npr1 gene heterozygosity. The present findings provided novel insight into the understanding of cardiorenal syndrome and suggested that glucocorticoids targeting the NPR1/SGK1 pathway may be a potential therapeutic target to treat cardiorenal syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.