Although superhardness effects have been extensively investigated for epitaxial ceramic nanomultilayer films with the same crystal structures in the last decade, those for multilayers with different crystal structures have been seldom studied. In this article, NbN/TaN nanomultilayers have been designed and deposited by reactive magnetron sputtering. The results showed that the crystal structures of NbN and TaN are face-centered cubic and hexagonal in superlattice films, respectively, and the lattice plane (111) of NbN is coherent with the (110) of TaN, i.e., {111}fcc-NbN∥{110}h-TaN. The results of microhardness measurement showed that the superhardness effects of NbN/TaN multilayers exist in a wide range of modulation period from 2.3 to 17.0 nm. This phenomenon is different from that of epitaxial ceramic multilayers where the maximum hardness usually takes place at a modulation period of 5.0–10.0 nm. It is proposed that the coherent stresses and the structural barriers (fcc/hexagonal) to dislocation motion between NbN and TaN layers are the main reasons for the high-hardness value in a wide range of modulation periods.
Kind of oxide-composed superhard nanomultilayer prepared by magnetron sputtering J. Vac. Sci. Technol. A 23, 539 (2005); 10.1116/1.1901663 Structure, hardness, and elastic modulus of Pd/Ti nanostructured multilayer films Hardness enhancement by compositionally modulated structure of Ti/TiN multilayer films
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.