The microstructural evolutions of both uncarbonated and carbonated cement pastes subjected to various high temperatures (30 °C, 200 °C, 400 °C, 500 °C, 600 °C, 720 °C, and 950 °C) are presented in this study by the means of mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). It was found that the thermal stabilities of uncarbonated cement pastes were significantly changed from 400 to 500 °C due to the decomposition of portlandite at this temperature range. More large pores and microcracks were generated from 600 to 720 °C, with the depolymerization of C-S-H. After carbonation, the microstructures of carbonated cement pastes remained unchanged below 500 °C and started to degrade at 600 °C, due to the decompositions of calcium carbonates and calcium modified silica gel. At 950 °C, both uncarbonated and carbonated cement pastes showed a loosely honeycombed microstructure, composed mainly of β-C2S and lime. It can be concluded that carbonation improves the high-temperature resistance of cement pastes up to 500 °C, but this advantage is lost at temperatures over 600 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.