A bottom-up method, using monoethanolamine (MEA) as both a passivation agent and a solvent, has been developed for rapid and massive synthesis of nitrogen-doped carbon dots (N-C-dots) from citric acid under heating conditions. This method requires relative mild temperature (170 °C) without special equipment, and affords one-pot large-scale production (39.96 g) of high-quality N-C-dots (quantum yield 10 of 40.3%) in a few minutes (10 minutes). Significantly, an interesting formation process of N-C-dots, for the first time, has been monitored by transmission electron microscopy, ultraviolet-visible absorbance spectroscopy, photoluminescence spectroscopy, Fourier transformed infrared spectroscopy, and thermogravimetric analysis, and a corresponding formation mechanism including polymerization, aromatization, nucleation, and growth, is proposed. It is important that the MEA-based synthesis of N-C-15 dots can be extended to various precursors, such as glucose, ascorbic acid, cysteine, and glutathione, which show general university. Furthermore, the N-C-dots with strong fluorescence, excellent optical stability, and low cytotoxicity, are successfully applied as fluorescent probes for bioimaging.
In this work we designed a MoS2 nanoplate-based nanoprobe for fluorescence imaging of intracellular ATP and photodynamic therapy (PDT) via ATP-mediated controllable release of (1)O2. The nanoprobe was prepared by simply assembling a chlorine e6 (Ce6) labelled ATP aptamer on MoS2 nanoplates, which have favorable biocompatibility, unusual surface-area-to-mass ratio, strong affinity to single-stranded DNA, and can quench the fluorescence of Ce6. After the nanoprobe was internalized into the cells and entered ATP-abundant lysosomes, its recognition to ATP led to the release of the single-stranded aptamer from MoS2 nanoplates and thus recovered the fluorescence of Ce6 at an excitation wavelength of 633 nm, which produced a highly sensitive and selective method for imaging of intracellular ATP. Meanwhile, the ATP-mediated release led to the generation of (1)O2 under 660 nm laser irradiation, which could induce tumor cell death with a lysosomal pathway. The controllable PDT provided a model approach for design of multifunctional theranostic nanoprobes. These results also promoted the development and application of MoS2 nanoplate-based platforms in biomedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.