Purpose: Our preclinical studies demonstrated the potential of chimeric antigen receptor (CAR)-glypican-3 (GPC3) T-cell therapy for hepatocellular carcinoma (HCC). We report herein the first published results of CAR-GPC3 T-cell therapy for HCC. Patients and Methods: In two prospective phase I studies, adult patients with advanced GPC3 þ HCC (Child-Pugh A) received autologous CAR-GPC3 T-cell therapy following cyclophosphamide-and fludarabine-induced lymphodepletion. The primary objective was to assess the treatment's safety. Adverse events were graded using the Common Terminology Criteria for Adverse Events (version 4.03). Tumor responses were evaluated using the RECIST (version 1.1). Results: A total of 13 patients received a median of 19.9 Â 10 8 CAR-GPC3 T cells by a data cutoff date of July 24, 2019. We observed pyrexia, decreased lymphocyte count, and cytokine release syndrome (CRS) in 13, 12, and nine patients, respectively. CRS (grade 1/2) was reversible in eight patients. One patient experienced grade 5 CRS. No patients had grade 3/4 neurotoxicity. The overall survival rates at 3 years, 1 year, and 6 months were 10.5%, 42.0%, and 50.3%, respectively, according to the Kaplan-Meier method. We confirmed two partial responses. One patient with sustained stable disease was alive after 44.2 months. CAR T-cell expansion tended to be positively associated with tumor response. Conclusions: This report demonstrated the initial safety profile of CAR-GPC3 T-cell therapy. We observed early signs of antitumor activity of CAR-GPC3 T cells in patients with advanced HCC.
As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-Lipid, but also an integrative database and visualization tool. We performed a systematic analysis of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is expected to serve as useful resource for the research on lipid modifications, especially on their co-regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.