Abstract:Recently, the cooling load forecasting for the short-term has received increasing attention in the field of heating, ventilation and air conditioning (HVAC), which is conducive to the HVAC system operation control. The load forecasting based on weather forecast data is an effective approach. The meteorological parameters are used as the key inputs of the prediction model, of which the accuracy has a great influence on the prediction loads. Obviously, there are errors between the weather forecast data and the actual weather data, but most of the existing studies ignored this issue. In order to deal with the uncertainty of weather forecast data scientifically, this paper proposes an effective approach based on the Monte Carlo Method (MCM) to process weather forecast data by using the 24-h-ahead Support Vector Machine (SVM) model for load prediction as an example. The data-preprocessing method based on MCM makes the forecasting results closer to the actual load than those without process, which reduces the Mean Absolute Percentage Error (MAPE) of load prediction from 11.54% to 10.92%. Furthermore, through sensitivity analysis, it was found that among the selected weather parameters, the factor that had the greatest impact on the prediction results was the 1-h-ahead temperature T(h-1) at the prediction moment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.