Artificial boundary conditions play a crucial role in the dynamic simulation of infinite Euler–Bernoulli beams. In this paper, a class of artificial boundary conditions, matching boundary conditions (MBCs), is presented to provide effective absorption of incident waves in numerical simulations of the Euler–Bernoulli beam. First, matching boundary conditions are proposed based on the space central difference scheme of the Euler–Bernoulli beam, and then, the specific coefficients of MBCs are determined by matching the dispersion relation. Moreover, reflection coefficient study and numerical tests are carried out to analyze the effectiveness of the proposed MBCs, indicating a remarkable agreement. Taken together, the proposed boundary conditions herein can absorb dispersive waves efficiently and are more compact than previous artificial boundary conditions, particularly suitable for real-time simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.