Image demoireing is a multi-faceted image restoration task involving both moire pattern removal and color restoration. In this paper, we raise a general degradation model to describe an image contaminated by moire patterns, and propose a novel multi-scale bandpass convolutional neural network (MBCNN) for single image demoireing. For moire pattern removal, we propose a multi-block-size learnable bandpass filters (M-LBFs), based on a block-wise frequency domain transform, to learn the frequency domain priors of moire patterns. We also introduce a new loss function named Dilated Advanced Sobel loss (D-ASL) to better sense the frequency information. For color restoration, we propose a two-step tone mapping strategy, which first applies a global tone mapping to correct for a global color shift, and then performs local fine tuning of the color per pixel. To determine the most appropriate frequency domain transform, we investigate several transforms including DCT, DFT, DWT, learnable non-linear transform and learnable orthogonal transform. We finally adopt the DCT. Our basic model won the AIM2019 demoireing challenge. Experimental results on three public datasets show that our method outperforms state-of-the-art methods by a large margin.
Different from general face recognition, age-invariant face recognition (AIFR) aims at matching faces with a big age gap. Previous discriminative methods usually focus on decomposing facial feature into age-related and age-invariant components, which suffer from the loss of facial identity information. In this article, we propose a novel Multi-feature Fusion and Decomposition (MFD) framework for age-invariant face recognition, which learns more discriminative and robust features and reduces the intra-class variants. Specifically, we first sample multiple face images of different ages with the same identity as a face time sequence. Then, the multi-head attention is employed to capture contextual information from facial feature series, extracted by the backbone network. Next, we combine feature decomposition with fusion based on the face time sequence to ensure that the final age-independent features effectively represent the identity information of the face and have stronger robustness against the aging process. Besides, we also mitigate imbalanced age distribution in the training data by a re-weighted age loss. We experimented with the proposed MFD over the popular CACD and CACD-VS datasets, where we show that our approach improves the AIFR performance than previous state-of-the-art methods. We simultaneously show the performance of MFD on LFW dataset.
In the age of information explosion, image classification is the key technology of dealing with and organizing a large number of image data. Currently, the classical image classification algorithms are mostly based on RGB images or grayscale images, and fail to make good use of the depth information about objects or scenes. The depth information in the images has a strong complementary effect, which can enhance the classification accuracy significantly. In this paper, we propose an image classification technology using principal component analysis based on multi-view depth characters. In detail, firstly, the depth image of the original image is estimated; secondly, depth characters are extracted from the RGB views and the depth view separately, and then the reducing dimension operation through the PCA is implemented. Eventually, the SVM is applied to image classification. The experimental results show that the method has good performance. Keyword: Image classification;Principal component analysis;multi-view depth characters
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.