Background
MicroRNAs (miRNAs) have been reported to play crucial roles in cancer cell processes, including proliferation, metastasis and cell cycle progression. We aimed to identify miRNAs that could act as suppressors of cell growth and invasion in non-small cell lung cancer (NSCLC).
Methods
Fifteen paired NSCLC tissue samples and pericarcinomatous normal tissues were collected and preserved in liquid nitrogen. The expression levels of miR-340-5p and ZNF503 mRNA were detected using a qPCR assay. The transfection of plasmids was conducted using Lipofectamine 3000 according to the manufacturer’s protocol. Cell proliferation was determined using a CCK-8 assay. The protein levels of endothelial–mesenchymal transition markers were measured using a western blot assay. Cell invasive ability was evaluated using a transwell assay. TargetScan was used to predict targets of miR-340. A dual luciferase reporter assay was performed to confirm a potential direct interaction between miR-340-5p and ZNF503.
Results
The expression level of miR-340-5p was frequently found to be lower in NSCLC tissues than in matched pericarcinomatous normal tissues. Overexpression of miR-340-5p significantly inhibited the proliferation and invasion NCI-H1650 (a NSCLC cell line), while inhibition of miR-340-5p stimulated cell growth. Using TargetScan, we predicted that ZNF503 could be a target of miR-340-5p. Further mechanistic studies demonstrated that the forced expression of ZNF503 could partially abrogate the miR-340-5p-mediated decrease in NCI-H1650 cell viability and invasion, suggesting that miR-340-5p suppressed cell growth and invasion in a ZNF503-dependent manner.
Conclusion
Our findings indicate that miR-340-5p inhibits NCI-H1650 cell proliferation and invasion by directly targeting ZNF503 and that miR-340-5p can serve as a potential therapeutic target for treating NSCLC.
Electronic supplementary material
The online version of this article (10.1186/s11658-019-0161-1) contains supplementary material, which is available to authorized users.
Long noncoding RNA activated by transforming growth factor-β (lncRNA-ATB) plays a critical role in progression of several cancers. In this study, lncRNA-ATB was significantly upregulated in NSCLC tissues and cell lines, and high lncRNA-ATB expression indicated poor prognosis. Knockdown of lncRNA-ATB suppressed NSCLC cell growth, colony formation, migration, invasion and reversed epithelial-mesenchymal transition. In vivo study showed that silencing lncRNA-ATB inhibited tumor growth. Further mechanism studies demonstrated that lncRNA-ATB was a target of miR-141-3p. MiR-141-3p expression was negatively related to lncRNA-ATB expression in NSCLC tissues. These results suggested that inhibiting lncRNA-ATB might be an approach for NSCLC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.