N6-methyladenosine (m6A) is the most prevalent internal form of modification in messenger RNA in higher eukaryotes and plays an important role in cancer, immunity, reproduction, development, and fat deposition. Intramuscular fat is the main factor used to measure the meat quality of an animal. The deposition of intramuscular fat and perirenal fat increases with age. However, there is no data on m6A modification of Rex rabbits and its potential biological roles in adipose deposition and muscle growth. Here, we performed two high-throughput sequencing methods, m6A-modified RNA immunoprecipitation sequence (MeRIP-seq) and RNA sequence (RNA-seq), to identify key genes with m6A modification on fat deposition in the muscle and adipose tissues of Rex rabbits. Then, qRT-PCR was used to identify the differently methylated genes related to fat deposition. Our findings showed that there were 12,876 and 10,973 m6A peaks in the rabbit muscle and adipose tissue transcriptomes, respectively. Stop codons, 3′-untranslated regions, and coding regions were found to be mainly enriched for m6A peaks. In addition, we found 5 differential methylases and 12 key genes of methylation modification related to fat deposition between muscle and adipose tissues samples. The expression levels of six random key genes were significantly higher in the fat than that in the muscle of Rex rabbits at different stages (p < 0.01). Finally, five differential methylases were found to regulate adipogenesis by affecting the expression of screened genes in different ways. These findings provided a theoretical basis for our future research on the function of m6A modification during the growth of fat deposits.
It is necessary to assess the appropriate dietary protein level of the forest musk deer (FMD), as nutritional needs are unclear. The microbiome in gastrointestinal tracts plays an important role in regulating nutrient utilization, absorption and host growth or development. Thus, we aimed to evaluate growth performance, nutrient digestibility and fecal microbiome of growing FMD supplied with different protein levels of diets. Eighteen 6-month-old male FMD with an initial weight 5.0 ± 0.2 kg were used in a 62-day trial. The animals were randomly distributed to three groups, the dietary crude protein (CP) level was 11.51% (L), 13.37% (M), and 15.48% (H). The results showed that the CP digestibility decreased as dietary CP level increased (p < 0.01). Compared with group L and H, FMD in M group has higher average daily gain, feed efficiency and neutral detergent fiber digestibility. For the fecal bacterial community, the percentage of Firmicutes was increased, Bacteroidetes was decreased and the diversity of microbiota significantly reduced (p < 0.05) with the increasing of dietary protein. The proportion of Ruminococcaceae_005, Ruminococcaceae_UCG-014 and uncultured_bacterium_f_Lachnospiraceae were significantly increased wtih rising CP, the proportions of Bacteroides and Rikenellaceae_RC9_gut_group were significantly decrease nevertheless at the genus level. The higher abundance of f_Prevotellaceae and g_Prevotellaceae_UCG_004 were found at M group by LEfSe analysis. The relative abundance of uncultured_bacterium_f_Ruminococcaceae was positively correlated with the average daily gain and feed conversion ratio (p < 0.05), whereas Family_XIII_AD3011_group was negatively correlated with feed conversion ratio (p < 0.05). The UPGMA tree showed L and M groups were closer in clustering relationship, while H group was clustered separately into a branch, which indicated that the bacterial structure had changed greatly with protein level increased from 13.37 to 15.48%. Overall, our results indicated that the optimum dietary CP for the growing FMD was 13.37%.
N6-methyladenosine (m6A) widely participates in various life processes of animals, including disease, memory, growth and development, etc. However, there is no report on m6A regulating intramuscular fat deposition in rabbits. In this study, m6A modification of Hycole rabbit muscle and adipose tissues were detected by MeRIP-Seq. In this case, 3 methylases and 12 genes modified by m6A were found to be significantly different between muscle and adipose tissues. At the same time, we found 3 methylases can regulate the expression of 12 genes in different ways and the function of 12 genes is related to fat deposition base on existing studies. 12 genes were modified by m6A methylase in rabbit muscle and adipose tissues. These results suggest that 3 methylases may regulate the expression of 12 genes through different pathways. In addition, the analysis of results showed that 6 of the 12 genes regulated eight signaling pathways, which regulated intramuscular fat deposition. RT-qPCR was used to validate the sequencing results and found the expression results of RT-qPCR and sequencing results are consistent. In summary, METTL4, ZC3H13 and IGF2BP2 regulated intramuscular fat by m6A modified gene/signaling pathways. Our work provided a new molecular basis and a new way to produce rabbit meat with good taste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.